Beacon-Based Time-Spatial Recognition toward Automatic Daily Care Reporting for Nursing Homes

As the world’s population of senior citizens continues to grow, the burden on the professionals who care for them (carers) is also increasing. In nursing homes, carers often write daily reports to improve the resident’s quality of life. However, since each carer needs to simultaneously care for mult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2018-01, Vol.2018 (2018), p.1-15
Hauptverfasser: Arakawa, Yutaka, Suwa, Hirohiko, Fujimoto, Manato, Taki, Kenta, Morita, Tatsuya, Yasumoto, Keiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the world’s population of senior citizens continues to grow, the burden on the professionals who care for them (carers) is also increasing. In nursing homes, carers often write daily reports to improve the resident’s quality of life. However, since each carer needs to simultaneously care for multiple residents, they have difficulty thoroughly recording the activities of residents. In this paper, we address this problem by proposing an automatic daily report generation system that monitors the activities of nursing home residents. The proposed system estimates the multiple locations (areas) at which residents are situated with a BLE beacon, using a variety of methods to analyze the RSSI values of BLE signals, and recognizes the activity of each resident from the estimated area information. The information of the estimated activity of residents is stored in a server with timestamps, and the server automatically generates daily reports based on them. To show the effectiveness of the proposed system, we conducted an experiment for five days with four participants in cooperation with an actual nursing home. We determined the proposed system’s effectiveness with the following four evaluations: (1) comparison of performance of different machine-learning algorithms, (2) comparison of smoothing methods, (3) comparison of time windows, and (4) evaluation of generated daily reports. Our evaluations show the most effective combination pattern among 156 patterns to accurately generate daily reports. We conclude that the proposed system has high effectiveness, high usability, and high flexibility.
ISSN:1687-725X
1687-7268
DOI:10.1155/2018/2625195