An all-pair quantum SVM approach for big data multiclass classification
In this paper, we discuss a quantum approach for the all-pair multiclass classification problem. In an all-pair approach, there is one binary classification problem for each pair of classes, and so there are k ( k − 1)/2 classifiers for a k -class classification problem. As compared to the classica...
Gespeichert in:
Veröffentlicht in: | Quantum information processing 2018-10, Vol.17 (10), p.1-16, Article 282 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | Quantum information processing |
container_volume | 17 |
creator | Bishwas, Arit Kumar Mani, Ashish Palade, Vasile |
description | In this paper, we discuss a quantum approach for the all-pair multiclass classification problem. In an all-pair approach, there is one binary classification problem for each pair of classes, and so there are
k
(
k
− 1)/2 classifiers for a
k
-class classification problem. As compared to the classical multiclass support vector machine that can be implemented with polynomial run time complexity, our approach exhibits exponential speedup due to quantum computing. The quantum all-pair algorithm can also be used with other classification algorithms, and a speedup gain can be achieved as compared to their classical counterparts. |
doi_str_mv | 10.1007/s11128-018-2046-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2101035258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101035258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-24894dfc685ff91d55ba34717df5df64a92028d2ff9afc4c743746137315fa433</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTZ4_EyXVQUFqYgFj601deKSKk1SO1nA15M2SKzYzIw0994ZHUKugd8C5_YuAYDIGIeMCa4M-z4hE9BWMpBSnB5nzrjV-pxcpLTlXIDJzIQs5zXFqmItlpHue6y7fkdfP54ptm1s0H_S0ES6Ljc0xw7prq-60leYEj3WMpQeu7KpL8lZwCoVV799St4f7t8Wj2z1snxazFfMSzAdEyqbqTx4k-kQZpBrvUapLNg86DwYhTPBRZaLYYnBK2-VtMqAtBJ0QCXllNyMucN3-75Inds2fayHk04ABy610NmgglHlY5NSLIJrY7nD-OWAuwMvN_JyAy934OW-B48YPWnQ1psi_iX_b_oB7SltAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101035258</pqid></control><display><type>article</type><title>An all-pair quantum SVM approach for big data multiclass classification</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bishwas, Arit Kumar ; Mani, Ashish ; Palade, Vasile</creator><creatorcontrib>Bishwas, Arit Kumar ; Mani, Ashish ; Palade, Vasile</creatorcontrib><description>In this paper, we discuss a quantum approach for the all-pair multiclass classification problem. In an all-pair approach, there is one binary classification problem for each pair of classes, and so there are
k
(
k
− 1)/2 classifiers for a
k
-class classification problem. As compared to the classical multiclass support vector machine that can be implemented with polynomial run time complexity, our approach exhibits exponential speedup due to quantum computing. The quantum all-pair algorithm can also be used with other classification algorithms, and a speedup gain can be achieved as compared to their classical counterparts.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-018-2046-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Classification ; Data management ; Data Structures and Information Theory ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Run time (computers) ; Spintronics ; Support vector machines</subject><ispartof>Quantum information processing, 2018-10, Vol.17 (10), p.1-16, Article 282</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-24894dfc685ff91d55ba34717df5df64a92028d2ff9afc4c743746137315fa433</citedby><cites>FETCH-LOGICAL-c316t-24894dfc685ff91d55ba34717df5df64a92028d2ff9afc4c743746137315fa433</cites><orcidid>0000-0001-8064-2035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-018-2046-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-018-2046-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Bishwas, Arit Kumar</creatorcontrib><creatorcontrib>Mani, Ashish</creatorcontrib><creatorcontrib>Palade, Vasile</creatorcontrib><title>An all-pair quantum SVM approach for big data multiclass classification</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>In this paper, we discuss a quantum approach for the all-pair multiclass classification problem. In an all-pair approach, there is one binary classification problem for each pair of classes, and so there are
k
(
k
− 1)/2 classifiers for a
k
-class classification problem. As compared to the classical multiclass support vector machine that can be implemented with polynomial run time complexity, our approach exhibits exponential speedup due to quantum computing. The quantum all-pair algorithm can also be used with other classification algorithms, and a speedup gain can be achieved as compared to their classical counterparts.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Data management</subject><subject>Data Structures and Information Theory</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Run time (computers)</subject><subject>Spintronics</subject><subject>Support vector machines</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssTZ4_EyXVQUFqYgFj601deKSKk1SO1nA15M2SKzYzIw0994ZHUKugd8C5_YuAYDIGIeMCa4M-z4hE9BWMpBSnB5nzrjV-pxcpLTlXIDJzIQs5zXFqmItlpHue6y7fkdfP54ptm1s0H_S0ES6Ljc0xw7prq-60leYEj3WMpQeu7KpL8lZwCoVV799St4f7t8Wj2z1snxazFfMSzAdEyqbqTx4k-kQZpBrvUapLNg86DwYhTPBRZaLYYnBK2-VtMqAtBJ0QCXllNyMucN3-75Inds2fayHk04ABy610NmgglHlY5NSLIJrY7nD-OWAuwMvN_JyAy934OW-B48YPWnQ1psi_iX_b_oB7SltAw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Bishwas, Arit Kumar</creator><creator>Mani, Ashish</creator><creator>Palade, Vasile</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8064-2035</orcidid></search><sort><creationdate>20181001</creationdate><title>An all-pair quantum SVM approach for big data multiclass classification</title><author>Bishwas, Arit Kumar ; Mani, Ashish ; Palade, Vasile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-24894dfc685ff91d55ba34717df5df64a92028d2ff9afc4c743746137315fa433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Data management</topic><topic>Data Structures and Information Theory</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Run time (computers)</topic><topic>Spintronics</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bishwas, Arit Kumar</creatorcontrib><creatorcontrib>Mani, Ashish</creatorcontrib><creatorcontrib>Palade, Vasile</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bishwas, Arit Kumar</au><au>Mani, Ashish</au><au>Palade, Vasile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An all-pair quantum SVM approach for big data multiclass classification</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>17</volume><issue>10</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>282</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>In this paper, we discuss a quantum approach for the all-pair multiclass classification problem. In an all-pair approach, there is one binary classification problem for each pair of classes, and so there are
k
(
k
− 1)/2 classifiers for a
k
-class classification problem. As compared to the classical multiclass support vector machine that can be implemented with polynomial run time complexity, our approach exhibits exponential speedup due to quantum computing. The quantum all-pair algorithm can also be used with other classification algorithms, and a speedup gain can be achieved as compared to their classical counterparts.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-018-2046-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8064-2035</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-0755 |
ispartof | Quantum information processing, 2018-10, Vol.17 (10), p.1-16, Article 282 |
issn | 1570-0755 1573-1332 |
language | eng |
recordid | cdi_proquest_journals_2101035258 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Classification Data management Data Structures and Information Theory Mathematical Physics Physics Physics and Astronomy Quantum Computing Quantum Information Technology Quantum Physics Run time (computers) Spintronics Support vector machines |
title | An all-pair quantum SVM approach for big data multiclass classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20all-pair%20quantum%20SVM%20approach%20for%20big%20data%20multiclass%20classification&rft.jtitle=Quantum%20information%20processing&rft.au=Bishwas,%20Arit%20Kumar&rft.date=2018-10-01&rft.volume=17&rft.issue=10&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=282&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-018-2046-z&rft_dat=%3Cproquest_cross%3E2101035258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101035258&rft_id=info:pmid/&rfr_iscdi=true |