An all-pair quantum SVM approach for big data multiclass classification

In this paper, we discuss a quantum approach for the all-pair multiclass classification problem. In an all-pair approach, there is one binary classification problem for each pair of classes, and so there are k ( k  − 1)/2 classifiers for a k -class classification problem. As compared to the classica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2018-10, Vol.17 (10), p.1-16, Article 282
Hauptverfasser: Bishwas, Arit Kumar, Mani, Ashish, Palade, Vasile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 10
container_start_page 1
container_title Quantum information processing
container_volume 17
creator Bishwas, Arit Kumar
Mani, Ashish
Palade, Vasile
description In this paper, we discuss a quantum approach for the all-pair multiclass classification problem. In an all-pair approach, there is one binary classification problem for each pair of classes, and so there are k ( k  − 1)/2 classifiers for a k -class classification problem. As compared to the classical multiclass support vector machine that can be implemented with polynomial run time complexity, our approach exhibits exponential speedup due to quantum computing. The quantum all-pair algorithm can also be used with other classification algorithms, and a speedup gain can be achieved as compared to their classical counterparts.
doi_str_mv 10.1007/s11128-018-2046-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2101035258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101035258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-24894dfc685ff91d55ba34717df5df64a92028d2ff9afc4c743746137315fa433</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTZ4_EyXVQUFqYgFj601deKSKk1SO1nA15M2SKzYzIw0994ZHUKugd8C5_YuAYDIGIeMCa4M-z4hE9BWMpBSnB5nzrjV-pxcpLTlXIDJzIQs5zXFqmItlpHue6y7fkdfP54ptm1s0H_S0ES6Ljc0xw7prq-60leYEj3WMpQeu7KpL8lZwCoVV799St4f7t8Wj2z1snxazFfMSzAdEyqbqTx4k-kQZpBrvUapLNg86DwYhTPBRZaLYYnBK2-VtMqAtBJ0QCXllNyMucN3-75Inds2fayHk04ABy610NmgglHlY5NSLIJrY7nD-OWAuwMvN_JyAy934OW-B48YPWnQ1psi_iX_b_oB7SltAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101035258</pqid></control><display><type>article</type><title>An all-pair quantum SVM approach for big data multiclass classification</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bishwas, Arit Kumar ; Mani, Ashish ; Palade, Vasile</creator><creatorcontrib>Bishwas, Arit Kumar ; Mani, Ashish ; Palade, Vasile</creatorcontrib><description>In this paper, we discuss a quantum approach for the all-pair multiclass classification problem. In an all-pair approach, there is one binary classification problem for each pair of classes, and so there are k ( k  − 1)/2 classifiers for a k -class classification problem. As compared to the classical multiclass support vector machine that can be implemented with polynomial run time complexity, our approach exhibits exponential speedup due to quantum computing. The quantum all-pair algorithm can also be used with other classification algorithms, and a speedup gain can be achieved as compared to their classical counterparts.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-018-2046-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Classification ; Data management ; Data Structures and Information Theory ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Run time (computers) ; Spintronics ; Support vector machines</subject><ispartof>Quantum information processing, 2018-10, Vol.17 (10), p.1-16, Article 282</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-24894dfc685ff91d55ba34717df5df64a92028d2ff9afc4c743746137315fa433</citedby><cites>FETCH-LOGICAL-c316t-24894dfc685ff91d55ba34717df5df64a92028d2ff9afc4c743746137315fa433</cites><orcidid>0000-0001-8064-2035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-018-2046-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-018-2046-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Bishwas, Arit Kumar</creatorcontrib><creatorcontrib>Mani, Ashish</creatorcontrib><creatorcontrib>Palade, Vasile</creatorcontrib><title>An all-pair quantum SVM approach for big data multiclass classification</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>In this paper, we discuss a quantum approach for the all-pair multiclass classification problem. In an all-pair approach, there is one binary classification problem for each pair of classes, and so there are k ( k  − 1)/2 classifiers for a k -class classification problem. As compared to the classical multiclass support vector machine that can be implemented with polynomial run time complexity, our approach exhibits exponential speedup due to quantum computing. The quantum all-pair algorithm can also be used with other classification algorithms, and a speedup gain can be achieved as compared to their classical counterparts.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Data management</subject><subject>Data Structures and Information Theory</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Run time (computers)</subject><subject>Spintronics</subject><subject>Support vector machines</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssTZ4_EyXVQUFqYgFj601deKSKk1SO1nA15M2SKzYzIw0994ZHUKugd8C5_YuAYDIGIeMCa4M-z4hE9BWMpBSnB5nzrjV-pxcpLTlXIDJzIQs5zXFqmItlpHue6y7fkdfP54ptm1s0H_S0ES6Ljc0xw7prq-60leYEj3WMpQeu7KpL8lZwCoVV799St4f7t8Wj2z1snxazFfMSzAdEyqbqTx4k-kQZpBrvUapLNg86DwYhTPBRZaLYYnBK2-VtMqAtBJ0QCXllNyMucN3-75Inds2fayHk04ABy610NmgglHlY5NSLIJrY7nD-OWAuwMvN_JyAy934OW-B48YPWnQ1psi_iX_b_oB7SltAw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Bishwas, Arit Kumar</creator><creator>Mani, Ashish</creator><creator>Palade, Vasile</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8064-2035</orcidid></search><sort><creationdate>20181001</creationdate><title>An all-pair quantum SVM approach for big data multiclass classification</title><author>Bishwas, Arit Kumar ; Mani, Ashish ; Palade, Vasile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-24894dfc685ff91d55ba34717df5df64a92028d2ff9afc4c743746137315fa433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Data management</topic><topic>Data Structures and Information Theory</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Run time (computers)</topic><topic>Spintronics</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bishwas, Arit Kumar</creatorcontrib><creatorcontrib>Mani, Ashish</creatorcontrib><creatorcontrib>Palade, Vasile</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bishwas, Arit Kumar</au><au>Mani, Ashish</au><au>Palade, Vasile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An all-pair quantum SVM approach for big data multiclass classification</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>17</volume><issue>10</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>282</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>In this paper, we discuss a quantum approach for the all-pair multiclass classification problem. In an all-pair approach, there is one binary classification problem for each pair of classes, and so there are k ( k  − 1)/2 classifiers for a k -class classification problem. As compared to the classical multiclass support vector machine that can be implemented with polynomial run time complexity, our approach exhibits exponential speedup due to quantum computing. The quantum all-pair algorithm can also be used with other classification algorithms, and a speedup gain can be achieved as compared to their classical counterparts.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-018-2046-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8064-2035</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2018-10, Vol.17 (10), p.1-16, Article 282
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_2101035258
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Classification
Data management
Data Structures and Information Theory
Mathematical Physics
Physics
Physics and Astronomy
Quantum Computing
Quantum Information Technology
Quantum Physics
Run time (computers)
Spintronics
Support vector machines
title An all-pair quantum SVM approach for big data multiclass classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20all-pair%20quantum%20SVM%20approach%20for%20big%20data%20multiclass%20classification&rft.jtitle=Quantum%20information%20processing&rft.au=Bishwas,%20Arit%20Kumar&rft.date=2018-10-01&rft.volume=17&rft.issue=10&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=282&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-018-2046-z&rft_dat=%3Cproquest_cross%3E2101035258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101035258&rft_id=info:pmid/&rfr_iscdi=true