An all-pair quantum SVM approach for big data multiclass classification

In this paper, we discuss a quantum approach for the all-pair multiclass classification problem. In an all-pair approach, there is one binary classification problem for each pair of classes, and so there are k ( k  − 1)/2 classifiers for a k -class classification problem. As compared to the classica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2018-10, Vol.17 (10), p.1-16, Article 282
Hauptverfasser: Bishwas, Arit Kumar, Mani, Ashish, Palade, Vasile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we discuss a quantum approach for the all-pair multiclass classification problem. In an all-pair approach, there is one binary classification problem for each pair of classes, and so there are k ( k  − 1)/2 classifiers for a k -class classification problem. As compared to the classical multiclass support vector machine that can be implemented with polynomial run time complexity, our approach exhibits exponential speedup due to quantum computing. The quantum all-pair algorithm can also be used with other classification algorithms, and a speedup gain can be achieved as compared to their classical counterparts.
ISSN:1570-0755
1573-1332
DOI:10.1007/s11128-018-2046-z