Inverse Scattering at Fixed Energy for Radial Magnetic Schrödinger Operators with Obstacle in Dimension Two
We study an inverse scattering problem at fixed energy for radial magnetic Schrödinger operators on R 2 \ B ( 0 , r 0 ) , where r 0 is a positive and arbitrarily small radius. We assume that the magnetic potential A satisfies a gauge condition, and we consider the class C of smooth, radial and compa...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2018-10, Vol.19 (10), p.3089-3128 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study an inverse scattering problem at fixed energy for radial magnetic Schrödinger operators on
R
2
\
B
(
0
,
r
0
)
, where
r
0
is a positive and arbitrarily small radius. We assume that the magnetic potential
A
satisfies a gauge condition, and we consider the class
C
of smooth, radial and compactly supported electric potentials and magnetic fields denoted by
V
and
B
, respectively. If (
V
,
B
) and
(
V
~
,
B
~
)
are two couples belonging to
C
, we then show that if the corresponding phase shifts
δ
l
and
δ
~
l
(i.e., the scattering data at fixed energy) coincide for all
l
∈
L
, where
L
⊂
N
⋆
satisfies the Müntz condition
∑
l
∈
L
1
l
=
+
∞
, then
V
(
x
)
=
V
~
(
x
)
and
B
(
x
)
=
B
~
(
x
)
outside the obstacle
B
(
0
,
r
0
)
. The proof uses the complex angular momentum method and is close in spirit to the celebrated Borg–Marchenko uniqueness theorem. |
---|---|
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-018-0707-1 |