Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady three-dimensional Eyring–Powell magneto-nanofluid flow

The pursuit of superior working liquids for heat / mass transfer mechanisms in engineering is on the rise, not only to maximise revenue but also to accommodate heat dissipation or chemical separation under extreme conditions. The addition of a small amount of nanoparticle, i.e. a product called nano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pramāṇa 2018-11, Vol.91 (5), p.1-9, Article 63
Hauptverfasser: Khan, W A, Alshomrani, A S, Alzahrani, A K, Khan, M, Irfan, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pursuit of superior working liquids for heat / mass transfer mechanisms in engineering is on the rise, not only to maximise revenue but also to accommodate heat dissipation or chemical separation under extreme conditions. The addition of a small amount of nanoparticle, i.e. a product called nanofluid, has been initiated over the last decade. In this paper, we present a comprehensive study of unsteady three-dimensional (3D) flow of the Eyring–Powell nanofluid under convective and nanoparticles mass flux conditions. The effects of constructive / destructive chemical reactions and nonlinear thermal radiation are also considered in the Eyring–Powell nanofluid model. Additionally, suitable transformations are utilised to obtain coupled ordinary differential equations (ODEs) from the system of partial differential equations (PDEs) and the numerical solution of the system of the coupled ODEs is obtained by means of the bvp4c scheme. The obtained numerical data are plotted for the temperature and concentration profiles of nanofluids for various and converging values of physical parameters. Our findings demonstrate that the temperature of the Eyring–Powell nanofluid fall-off by changing the heat sink parameter. Furthermore, it is perceived from the sketches that the concentration of Eyring–Powell magneto-nanofluid decays at higher values of chemical reaction parameter.
ISSN:0304-4289
0973-7111
DOI:10.1007/s12043-018-1634-x