Desargues configurations with four self-conjugate points

In a projective plane over a field F , the diagonal points of a quadrangle are collinear if and only if F has characteristic 2. Such a quadrangle together with its diagonal points and the lines connecting these points form the subplane of order 2, called a Fano plane. Using Desargues configurations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mathematics 2018-09, Vol.4 (3), p.837-844
Hauptverfasser: Bruen, Aiden A., McQuillan, James M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a projective plane over a field F , the diagonal points of a quadrangle are collinear if and only if F has characteristic 2. Such a quadrangle together with its diagonal points and the lines connecting these points form the subplane of order 2, called a Fano plane. Using Desargues configurations and polarities, we provide a similar type of synthetic criterion and construction for characteristic 3 fields. Let F be a field with characteristic not equal to 2. From any quadrangle and one of its diagonal points V , we construct a pair of triangles Δ 1 , Δ 2 in perspective from V , and the resulting Desargues configuration D such that the vertices of Δ 1 are self-conjugate under a particular polarity. For this Desargues configuration D , the vertex of perspectivity V of the pair Δ 1 , Δ 2 is a fourth self-conjugate point if and only if F has characteristic 3. If F has characteristic 3, then the 10 points and 10 lines of D together with three additional points and three additional lines yield a projective subplane of order 3 of  π .
ISSN:2199-675X
2199-6768
DOI:10.1007/s40879-018-0274-5