Graphs with Flexible Labelings
For a flexible labeling of a graph, it is possible to construct infinitely many non-equivalent realizations keeping the distances of connected points constant. We give a combinatorial characterization of graphs that have flexible labelings, possibly non-generic. The characterization is based on colo...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2019-09, Vol.62 (2), p.461-480 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a flexible labeling of a graph, it is possible to construct infinitely many non-equivalent realizations keeping the distances of connected points constant. We give a combinatorial characterization of graphs that have flexible labelings, possibly non-generic. The characterization is based on colorings of the edges with restrictions on the cycles. Furthermore, we give necessary criteria and sufficient ones for the existence of such colorings. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-018-0026-9 |