Promoted adsorption of CO2 on amine‐impregnated adsorbents by functionalized ionic liquids

Amine‐impregnated adsorbents are promising alternatives to aqueous amines for CO2 capture. However, the diffusion‐controlled CO2 adsorption process is a significant issue associated with them, resulting in the insufficient utilization of amine groups. Herein, we propose the use of functionalized ion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2018-10, Vol.64 (10), p.3671-3680
Hauptverfasser: Liu, Fujian, Huang, Kuan, Jiang, Lilong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amine‐impregnated adsorbents are promising alternatives to aqueous amines for CO2 capture. However, the diffusion‐controlled CO2 adsorption process is a significant issue associated with them, resulting in the insufficient utilization of amine groups. Herein, we propose the use of functionalized ionic liquids 1‐ethyl‐3‐methylimidazolium acetate ([emim][Ac]) with chemical reactivity to CO2 and low viscosity as the additive to amine‐impregnated adsorbents. The key is that [emim][Ac] does not show drastic increase in viscosity after reacting with CO2. Taking the polyethyleneimine (PEI)‐impregnated SBA‐15 as a model system, it is found that the CO2 capacities of PEI/SBA‐15 composites are improved by 86%, and the active site efficiencies are improved by 270%, after the addition of [emim][Ac]. The addition of [emim][Ac] to PEI/SBA‐15 composites also helps improve the CO2 adsorption rate and recycling stability of composites. Therefore, [emim][Ac] offers the opportunity to fabricate amine‐impregnated adsorbents with simultaneously improved CO2 capacities, adsorption kinetics, and recycling stability. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3671–3680, 2018
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.16333