Fish proteins not lipids are the major nutrients limiting the use of vegetable ingredients in catfish nutrition
The objective of this study was to determine the major nutrient limiting growth and lipid metabolism in African catfish fed diets composed of vegetable ingredients. Four diets were formulated from contrasted meal (fish meal: FM; vegetable meal: VM) and oil (fish oil: FO; vegetable oil: VO) sources....
Gespeichert in:
Veröffentlicht in: | Aquaculture nutrition 2018-10, Vol.24 (5), p.1393-1405 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of this study was to determine the major nutrient limiting growth and lipid metabolism in African catfish fed diets composed of vegetable ingredients. Four diets were formulated from contrasted meal (fish meal: FM; vegetable meal: VM) and oil (fish oil: FO; vegetable oil: VO) sources. Replacement of FO by VO did not affect specific growth rate (SGR) and feed efficiency, whereas lower values were recorded in the case of FM replacement. LC‐PUFAs muscle contents were higher in fish fed control FMFO diet than in fish fed vegetable ingredients. However, the decrease in docosahexaenoic acid (DHA) concentration in FMVO group was limited compared to VM groups despite the same low DHA level in those three diets. These results may suggest an activation of LC‐PUFA biosynthesis from PUFA precursors brought with vegetable oils in FMVO group. This hypothesize is reinforced by the significant stimulation of elovl5 gene expression in liver and intestine from fish fed FMVO. Therefore, this study demonstrated that African catfish is able to bioconvert LC‐PUFAs at a significant biological level when FO is replaced by VO whereas the use of plant proteins has strong detrimental effects on growth performances. |
---|---|
ISSN: | 1353-5773 1365-2095 |
DOI: | 10.1111/anu.12676 |