Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating
We developed an advanced method for fabricating microfluidic structures comprising channels and inputs/outputs buried within a silicon wafer based on single level lithography. We etched trenches into a silicon substrate, covered these trenches with parylene-C, and selectively opened their bottoms us...
Gespeichert in:
Veröffentlicht in: | Microfluidics and nanofluidics 2018-09, Vol.22 (9), p.1-7, Article 105 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | Microfluidics and nanofluidics |
container_volume | 22 |
creator | Gablech, Imrich Somer, Jakub Fohlerová, Zdenka Svatoš, Vojtěch Pekárek, Jan Kurdík, Stanislav Feng, Jianguo Fecko, Peter Podešva, Pavel Hubálek, Jaromír Neužil, Pavel |
description | We developed an advanced method for fabricating microfluidic structures comprising channels and inputs/outputs buried within a silicon wafer based on single level lithography. We etched trenches into a silicon substrate, covered these trenches with parylene-C, and selectively opened their bottoms using femtosecond laser photoablation, forming channels and inputs/outputs by isotropic etching of silicon by xenon difluoride vapors. We subsequently sealed the channels with a second parylene-C layer. Unlike in previously published works, this entire process is conducted at ambient temperature to allow for integration with complementary metal oxide semiconductor devices for smart readout electronics. We also demonstrated a method of chip cryo-cleaving with parylene presence that allows for monitoring of the process development. We also created an observation window for in situ visualization inside the opaque silicon substrate by forming a hole in the parylene layer at the silicon backside and with local silicon removal by xenon difluoride vapor etching. We verified the microfluidic chip performance by forming a segmented flow of a fluorescein solution in an oil stream. This proposed technique provides opportunities for forming simple microfluidic systems with buried channels at ambient temperature. |
doi_str_mv | 10.1007/s10404-018-2125-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2098963319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2098963319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-345fc61ca2e1024afc30cbb41fcd09534cc58e5f0e1ebc62eeb100233657f04a3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhiMEEqXwA9gsMQfOH0mTEVUUkCqxwGw5zrl1ldrBTqgY-ee4CoKJ6azT896dnyy7pnBLARZ3kYIAkQOtckZZkZcn2YyWlOeiruH0912x8-wixh2AWDAKs-xrpZpgtRqsd8Qb0ozBYkv2VgdvutG2VhO9Vc5hF8nBDlvim4jhYwocrGv9IZIxWrchBveDj6i9a0mnEkX6rR-8arqJVqnfq_DZocN8SbRPbbe5zM6M6iJe_dR59rZ6eF0-5euXx-fl_TrXnJZDzkVhdEm1YkiBCWU0B900ghrdQl1woXVRYWEAKTa6ZIhNEsM4L4uFAaH4PLuZ5vbBv48YB7nzY3BppWRQV3XJOa0TRScq_T_GgEb2we7T0ZKCPJqWk2mZTMujaVmmDJsyMbFug-Fv8v-hbzULhCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098963319</pqid></control><display><type>article</type><title>Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gablech, Imrich ; Somer, Jakub ; Fohlerová, Zdenka ; Svatoš, Vojtěch ; Pekárek, Jan ; Kurdík, Stanislav ; Feng, Jianguo ; Fecko, Peter ; Podešva, Pavel ; Hubálek, Jaromír ; Neužil, Pavel</creator><creatorcontrib>Gablech, Imrich ; Somer, Jakub ; Fohlerová, Zdenka ; Svatoš, Vojtěch ; Pekárek, Jan ; Kurdík, Stanislav ; Feng, Jianguo ; Fecko, Peter ; Podešva, Pavel ; Hubálek, Jaromír ; Neužil, Pavel</creatorcontrib><description>We developed an advanced method for fabricating microfluidic structures comprising channels and inputs/outputs buried within a silicon wafer based on single level lithography. We etched trenches into a silicon substrate, covered these trenches with parylene-C, and selectively opened their bottoms using femtosecond laser photoablation, forming channels and inputs/outputs by isotropic etching of silicon by xenon difluoride vapors. We subsequently sealed the channels with a second parylene-C layer. Unlike in previously published works, this entire process is conducted at ambient temperature to allow for integration with complementary metal oxide semiconductor devices for smart readout electronics. We also demonstrated a method of chip cryo-cleaving with parylene presence that allows for monitoring of the process development. We also created an observation window for in situ visualization inside the opaque silicon substrate by forming a hole in the parylene layer at the silicon backside and with local silicon removal by xenon difluoride vapor etching. We verified the microfluidic chip performance by forming a segmented flow of a fluorescein solution in an oil stream. This proposed technique provides opportunities for forming simple microfluidic systems with buried channels at ambient temperature.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-018-2125-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ambient temperature ; Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Buried structures ; Channels ; Electronic devices ; Engineering ; Engineering Fluid Dynamics ; Etching ; Fabrication ; Fluorescein ; Forming ; Laser ablation ; Lasers ; Metal oxide semiconductors ; Metals ; Methods ; MOS devices ; Nanotechnology and Microengineering ; Removal ; Semiconductor devices ; Semiconductors ; Short Communication ; Silicon ; Silicon substrates ; Silicon wafers ; Temperature ; Trenches ; Vapors ; Xenon</subject><ispartof>Microfluidics and nanofluidics, 2018-09, Vol.22 (9), p.1-7, Article 105</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Microfluidics and Nanofluidics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-345fc61ca2e1024afc30cbb41fcd09534cc58e5f0e1ebc62eeb100233657f04a3</citedby><cites>FETCH-LOGICAL-c316t-345fc61ca2e1024afc30cbb41fcd09534cc58e5f0e1ebc62eeb100233657f04a3</cites><orcidid>0000-0003-4218-1287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-018-2125-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-018-2125-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Gablech, Imrich</creatorcontrib><creatorcontrib>Somer, Jakub</creatorcontrib><creatorcontrib>Fohlerová, Zdenka</creatorcontrib><creatorcontrib>Svatoš, Vojtěch</creatorcontrib><creatorcontrib>Pekárek, Jan</creatorcontrib><creatorcontrib>Kurdík, Stanislav</creatorcontrib><creatorcontrib>Feng, Jianguo</creatorcontrib><creatorcontrib>Fecko, Peter</creatorcontrib><creatorcontrib>Podešva, Pavel</creatorcontrib><creatorcontrib>Hubálek, Jaromír</creatorcontrib><creatorcontrib>Neužil, Pavel</creatorcontrib><title>Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>We developed an advanced method for fabricating microfluidic structures comprising channels and inputs/outputs buried within a silicon wafer based on single level lithography. We etched trenches into a silicon substrate, covered these trenches with parylene-C, and selectively opened their bottoms using femtosecond laser photoablation, forming channels and inputs/outputs by isotropic etching of silicon by xenon difluoride vapors. We subsequently sealed the channels with a second parylene-C layer. Unlike in previously published works, this entire process is conducted at ambient temperature to allow for integration with complementary metal oxide semiconductor devices for smart readout electronics. We also demonstrated a method of chip cryo-cleaving with parylene presence that allows for monitoring of the process development. We also created an observation window for in situ visualization inside the opaque silicon substrate by forming a hole in the parylene layer at the silicon backside and with local silicon removal by xenon difluoride vapor etching. We verified the microfluidic chip performance by forming a segmented flow of a fluorescein solution in an oil stream. This proposed technique provides opportunities for forming simple microfluidic systems with buried channels at ambient temperature.</description><subject>Ambient temperature</subject><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Buried structures</subject><subject>Channels</subject><subject>Electronic devices</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Etching</subject><subject>Fabrication</subject><subject>Fluorescein</subject><subject>Forming</subject><subject>Laser ablation</subject><subject>Lasers</subject><subject>Metal oxide semiconductors</subject><subject>Metals</subject><subject>Methods</subject><subject>MOS devices</subject><subject>Nanotechnology and Microengineering</subject><subject>Removal</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Short Communication</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Silicon wafers</subject><subject>Temperature</subject><subject>Trenches</subject><subject>Vapors</subject><subject>Xenon</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhiMEEqXwA9gsMQfOH0mTEVUUkCqxwGw5zrl1ldrBTqgY-ee4CoKJ6azT896dnyy7pnBLARZ3kYIAkQOtckZZkZcn2YyWlOeiruH0912x8-wixh2AWDAKs-xrpZpgtRqsd8Qb0ozBYkv2VgdvutG2VhO9Vc5hF8nBDlvim4jhYwocrGv9IZIxWrchBveDj6i9a0mnEkX6rR-8arqJVqnfq_DZocN8SbRPbbe5zM6M6iJe_dR59rZ6eF0-5euXx-fl_TrXnJZDzkVhdEm1YkiBCWU0B900ghrdQl1woXVRYWEAKTa6ZIhNEsM4L4uFAaH4PLuZ5vbBv48YB7nzY3BppWRQV3XJOa0TRScq_T_GgEb2we7T0ZKCPJqWk2mZTMujaVmmDJsyMbFug-Fv8v-hbzULhCw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Gablech, Imrich</creator><creator>Somer, Jakub</creator><creator>Fohlerová, Zdenka</creator><creator>Svatoš, Vojtěch</creator><creator>Pekárek, Jan</creator><creator>Kurdík, Stanislav</creator><creator>Feng, Jianguo</creator><creator>Fecko, Peter</creator><creator>Podešva, Pavel</creator><creator>Hubálek, Jaromír</creator><creator>Neužil, Pavel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4218-1287</orcidid></search><sort><creationdate>20180901</creationdate><title>Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating</title><author>Gablech, Imrich ; Somer, Jakub ; Fohlerová, Zdenka ; Svatoš, Vojtěch ; Pekárek, Jan ; Kurdík, Stanislav ; Feng, Jianguo ; Fecko, Peter ; Podešva, Pavel ; Hubálek, Jaromír ; Neužil, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-345fc61ca2e1024afc30cbb41fcd09534cc58e5f0e1ebc62eeb100233657f04a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ambient temperature</topic><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Buried structures</topic><topic>Channels</topic><topic>Electronic devices</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Etching</topic><topic>Fabrication</topic><topic>Fluorescein</topic><topic>Forming</topic><topic>Laser ablation</topic><topic>Lasers</topic><topic>Metal oxide semiconductors</topic><topic>Metals</topic><topic>Methods</topic><topic>MOS devices</topic><topic>Nanotechnology and Microengineering</topic><topic>Removal</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Short Communication</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Silicon wafers</topic><topic>Temperature</topic><topic>Trenches</topic><topic>Vapors</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gablech, Imrich</creatorcontrib><creatorcontrib>Somer, Jakub</creatorcontrib><creatorcontrib>Fohlerová, Zdenka</creatorcontrib><creatorcontrib>Svatoš, Vojtěch</creatorcontrib><creatorcontrib>Pekárek, Jan</creatorcontrib><creatorcontrib>Kurdík, Stanislav</creatorcontrib><creatorcontrib>Feng, Jianguo</creatorcontrib><creatorcontrib>Fecko, Peter</creatorcontrib><creatorcontrib>Podešva, Pavel</creatorcontrib><creatorcontrib>Hubálek, Jaromír</creatorcontrib><creatorcontrib>Neužil, Pavel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gablech, Imrich</au><au>Somer, Jakub</au><au>Fohlerová, Zdenka</au><au>Svatoš, Vojtěch</au><au>Pekárek, Jan</au><au>Kurdík, Stanislav</au><au>Feng, Jianguo</au><au>Fecko, Peter</au><au>Podešva, Pavel</au><au>Hubálek, Jaromír</au><au>Neužil, Pavel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>22</volume><issue>9</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>105</artnum><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>We developed an advanced method for fabricating microfluidic structures comprising channels and inputs/outputs buried within a silicon wafer based on single level lithography. We etched trenches into a silicon substrate, covered these trenches with parylene-C, and selectively opened their bottoms using femtosecond laser photoablation, forming channels and inputs/outputs by isotropic etching of silicon by xenon difluoride vapors. We subsequently sealed the channels with a second parylene-C layer. Unlike in previously published works, this entire process is conducted at ambient temperature to allow for integration with complementary metal oxide semiconductor devices for smart readout electronics. We also demonstrated a method of chip cryo-cleaving with parylene presence that allows for monitoring of the process development. We also created an observation window for in situ visualization inside the opaque silicon substrate by forming a hole in the parylene layer at the silicon backside and with local silicon removal by xenon difluoride vapor etching. We verified the microfluidic chip performance by forming a segmented flow of a fluorescein solution in an oil stream. This proposed technique provides opportunities for forming simple microfluidic systems with buried channels at ambient temperature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-018-2125-6</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4218-1287</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4982 |
ispartof | Microfluidics and nanofluidics, 2018-09, Vol.22 (9), p.1-7, Article 105 |
issn | 1613-4982 1613-4990 |
language | eng |
recordid | cdi_proquest_journals_2098963319 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ambient temperature Analytical Chemistry Biomedical Engineering and Bioengineering Buried structures Channels Electronic devices Engineering Engineering Fluid Dynamics Etching Fabrication Fluorescein Forming Laser ablation Lasers Metal oxide semiconductors Metals Methods MOS devices Nanotechnology and Microengineering Removal Semiconductor devices Semiconductors Short Communication Silicon Silicon substrates Silicon wafers Temperature Trenches Vapors Xenon |
title | Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20buried%20microfluidic%20channels%20with%20observation%20windows%20using%20femtosecond%20laser%20photoablation%20and%20parylene-C%20coating&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Gablech,%20Imrich&rft.date=2018-09-01&rft.volume=22&rft.issue=9&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=105&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-018-2125-6&rft_dat=%3Cproquest_cross%3E2098963319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098963319&rft_id=info:pmid/&rfr_iscdi=true |