Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating

We developed an advanced method for fabricating microfluidic structures comprising channels and inputs/outputs buried within a silicon wafer based on single level lithography. We etched trenches into a silicon substrate, covered these trenches with parylene-C, and selectively opened their bottoms us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microfluidics and nanofluidics 2018-09, Vol.22 (9), p.1-7, Article 105
Hauptverfasser: Gablech, Imrich, Somer, Jakub, Fohlerová, Zdenka, Svatoš, Vojtěch, Pekárek, Jan, Kurdík, Stanislav, Feng, Jianguo, Fecko, Peter, Podešva, Pavel, Hubálek, Jaromír, Neužil, Pavel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 9
container_start_page 1
container_title Microfluidics and nanofluidics
container_volume 22
creator Gablech, Imrich
Somer, Jakub
Fohlerová, Zdenka
Svatoš, Vojtěch
Pekárek, Jan
Kurdík, Stanislav
Feng, Jianguo
Fecko, Peter
Podešva, Pavel
Hubálek, Jaromír
Neužil, Pavel
description We developed an advanced method for fabricating microfluidic structures comprising channels and inputs/outputs buried within a silicon wafer based on single level lithography. We etched trenches into a silicon substrate, covered these trenches with parylene-C, and selectively opened their bottoms using femtosecond laser photoablation, forming channels and inputs/outputs by isotropic etching of silicon by xenon difluoride vapors. We subsequently sealed the channels with a second parylene-C layer. Unlike in previously published works, this entire process is conducted at ambient temperature to allow for integration with complementary metal oxide semiconductor devices for smart readout electronics. We also demonstrated a method of chip cryo-cleaving with parylene presence that allows for monitoring of the process development. We also created an observation window for in situ visualization inside the opaque silicon substrate by forming a hole in the parylene layer at the silicon backside and with local silicon removal by xenon difluoride vapor etching. We verified the microfluidic chip performance by forming a segmented flow of a fluorescein solution in an oil stream. This proposed technique provides opportunities for forming simple microfluidic systems with buried channels at ambient temperature.
doi_str_mv 10.1007/s10404-018-2125-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2098963319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2098963319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-345fc61ca2e1024afc30cbb41fcd09534cc58e5f0e1ebc62eeb100233657f04a3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhiMEEqXwA9gsMQfOH0mTEVUUkCqxwGw5zrl1ldrBTqgY-ee4CoKJ6azT896dnyy7pnBLARZ3kYIAkQOtckZZkZcn2YyWlOeiruH0912x8-wixh2AWDAKs-xrpZpgtRqsd8Qb0ozBYkv2VgdvutG2VhO9Vc5hF8nBDlvim4jhYwocrGv9IZIxWrchBveDj6i9a0mnEkX6rR-8arqJVqnfq_DZocN8SbRPbbe5zM6M6iJe_dR59rZ6eF0-5euXx-fl_TrXnJZDzkVhdEm1YkiBCWU0B900ghrdQl1woXVRYWEAKTa6ZIhNEsM4L4uFAaH4PLuZ5vbBv48YB7nzY3BppWRQV3XJOa0TRScq_T_GgEb2we7T0ZKCPJqWk2mZTMujaVmmDJsyMbFug-Fv8v-hbzULhCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098963319</pqid></control><display><type>article</type><title>Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gablech, Imrich ; Somer, Jakub ; Fohlerová, Zdenka ; Svatoš, Vojtěch ; Pekárek, Jan ; Kurdík, Stanislav ; Feng, Jianguo ; Fecko, Peter ; Podešva, Pavel ; Hubálek, Jaromír ; Neužil, Pavel</creator><creatorcontrib>Gablech, Imrich ; Somer, Jakub ; Fohlerová, Zdenka ; Svatoš, Vojtěch ; Pekárek, Jan ; Kurdík, Stanislav ; Feng, Jianguo ; Fecko, Peter ; Podešva, Pavel ; Hubálek, Jaromír ; Neužil, Pavel</creatorcontrib><description>We developed an advanced method for fabricating microfluidic structures comprising channels and inputs/outputs buried within a silicon wafer based on single level lithography. We etched trenches into a silicon substrate, covered these trenches with parylene-C, and selectively opened their bottoms using femtosecond laser photoablation, forming channels and inputs/outputs by isotropic etching of silicon by xenon difluoride vapors. We subsequently sealed the channels with a second parylene-C layer. Unlike in previously published works, this entire process is conducted at ambient temperature to allow for integration with complementary metal oxide semiconductor devices for smart readout electronics. We also demonstrated a method of chip cryo-cleaving with parylene presence that allows for monitoring of the process development. We also created an observation window for in situ visualization inside the opaque silicon substrate by forming a hole in the parylene layer at the silicon backside and with local silicon removal by xenon difluoride vapor etching. We verified the microfluidic chip performance by forming a segmented flow of a fluorescein solution in an oil stream. This proposed technique provides opportunities for forming simple microfluidic systems with buried channels at ambient temperature.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-018-2125-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ambient temperature ; Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Buried structures ; Channels ; Electronic devices ; Engineering ; Engineering Fluid Dynamics ; Etching ; Fabrication ; Fluorescein ; Forming ; Laser ablation ; Lasers ; Metal oxide semiconductors ; Metals ; Methods ; MOS devices ; Nanotechnology and Microengineering ; Removal ; Semiconductor devices ; Semiconductors ; Short Communication ; Silicon ; Silicon substrates ; Silicon wafers ; Temperature ; Trenches ; Vapors ; Xenon</subject><ispartof>Microfluidics and nanofluidics, 2018-09, Vol.22 (9), p.1-7, Article 105</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Microfluidics and Nanofluidics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-345fc61ca2e1024afc30cbb41fcd09534cc58e5f0e1ebc62eeb100233657f04a3</citedby><cites>FETCH-LOGICAL-c316t-345fc61ca2e1024afc30cbb41fcd09534cc58e5f0e1ebc62eeb100233657f04a3</cites><orcidid>0000-0003-4218-1287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-018-2125-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-018-2125-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Gablech, Imrich</creatorcontrib><creatorcontrib>Somer, Jakub</creatorcontrib><creatorcontrib>Fohlerová, Zdenka</creatorcontrib><creatorcontrib>Svatoš, Vojtěch</creatorcontrib><creatorcontrib>Pekárek, Jan</creatorcontrib><creatorcontrib>Kurdík, Stanislav</creatorcontrib><creatorcontrib>Feng, Jianguo</creatorcontrib><creatorcontrib>Fecko, Peter</creatorcontrib><creatorcontrib>Podešva, Pavel</creatorcontrib><creatorcontrib>Hubálek, Jaromír</creatorcontrib><creatorcontrib>Neužil, Pavel</creatorcontrib><title>Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>We developed an advanced method for fabricating microfluidic structures comprising channels and inputs/outputs buried within a silicon wafer based on single level lithography. We etched trenches into a silicon substrate, covered these trenches with parylene-C, and selectively opened their bottoms using femtosecond laser photoablation, forming channels and inputs/outputs by isotropic etching of silicon by xenon difluoride vapors. We subsequently sealed the channels with a second parylene-C layer. Unlike in previously published works, this entire process is conducted at ambient temperature to allow for integration with complementary metal oxide semiconductor devices for smart readout electronics. We also demonstrated a method of chip cryo-cleaving with parylene presence that allows for monitoring of the process development. We also created an observation window for in situ visualization inside the opaque silicon substrate by forming a hole in the parylene layer at the silicon backside and with local silicon removal by xenon difluoride vapor etching. We verified the microfluidic chip performance by forming a segmented flow of a fluorescein solution in an oil stream. This proposed technique provides opportunities for forming simple microfluidic systems with buried channels at ambient temperature.</description><subject>Ambient temperature</subject><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Buried structures</subject><subject>Channels</subject><subject>Electronic devices</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Etching</subject><subject>Fabrication</subject><subject>Fluorescein</subject><subject>Forming</subject><subject>Laser ablation</subject><subject>Lasers</subject><subject>Metal oxide semiconductors</subject><subject>Metals</subject><subject>Methods</subject><subject>MOS devices</subject><subject>Nanotechnology and Microengineering</subject><subject>Removal</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Short Communication</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Silicon wafers</subject><subject>Temperature</subject><subject>Trenches</subject><subject>Vapors</subject><subject>Xenon</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhiMEEqXwA9gsMQfOH0mTEVUUkCqxwGw5zrl1ldrBTqgY-ee4CoKJ6azT896dnyy7pnBLARZ3kYIAkQOtckZZkZcn2YyWlOeiruH0912x8-wixh2AWDAKs-xrpZpgtRqsd8Qb0ozBYkv2VgdvutG2VhO9Vc5hF8nBDlvim4jhYwocrGv9IZIxWrchBveDj6i9a0mnEkX6rR-8arqJVqnfq_DZocN8SbRPbbe5zM6M6iJe_dR59rZ6eF0-5euXx-fl_TrXnJZDzkVhdEm1YkiBCWU0B900ghrdQl1woXVRYWEAKTa6ZIhNEsM4L4uFAaH4PLuZ5vbBv48YB7nzY3BppWRQV3XJOa0TRScq_T_GgEb2we7T0ZKCPJqWk2mZTMujaVmmDJsyMbFug-Fv8v-hbzULhCw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Gablech, Imrich</creator><creator>Somer, Jakub</creator><creator>Fohlerová, Zdenka</creator><creator>Svatoš, Vojtěch</creator><creator>Pekárek, Jan</creator><creator>Kurdík, Stanislav</creator><creator>Feng, Jianguo</creator><creator>Fecko, Peter</creator><creator>Podešva, Pavel</creator><creator>Hubálek, Jaromír</creator><creator>Neužil, Pavel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4218-1287</orcidid></search><sort><creationdate>20180901</creationdate><title>Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating</title><author>Gablech, Imrich ; Somer, Jakub ; Fohlerová, Zdenka ; Svatoš, Vojtěch ; Pekárek, Jan ; Kurdík, Stanislav ; Feng, Jianguo ; Fecko, Peter ; Podešva, Pavel ; Hubálek, Jaromír ; Neužil, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-345fc61ca2e1024afc30cbb41fcd09534cc58e5f0e1ebc62eeb100233657f04a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ambient temperature</topic><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Buried structures</topic><topic>Channels</topic><topic>Electronic devices</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Etching</topic><topic>Fabrication</topic><topic>Fluorescein</topic><topic>Forming</topic><topic>Laser ablation</topic><topic>Lasers</topic><topic>Metal oxide semiconductors</topic><topic>Metals</topic><topic>Methods</topic><topic>MOS devices</topic><topic>Nanotechnology and Microengineering</topic><topic>Removal</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Short Communication</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Silicon wafers</topic><topic>Temperature</topic><topic>Trenches</topic><topic>Vapors</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gablech, Imrich</creatorcontrib><creatorcontrib>Somer, Jakub</creatorcontrib><creatorcontrib>Fohlerová, Zdenka</creatorcontrib><creatorcontrib>Svatoš, Vojtěch</creatorcontrib><creatorcontrib>Pekárek, Jan</creatorcontrib><creatorcontrib>Kurdík, Stanislav</creatorcontrib><creatorcontrib>Feng, Jianguo</creatorcontrib><creatorcontrib>Fecko, Peter</creatorcontrib><creatorcontrib>Podešva, Pavel</creatorcontrib><creatorcontrib>Hubálek, Jaromír</creatorcontrib><creatorcontrib>Neužil, Pavel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gablech, Imrich</au><au>Somer, Jakub</au><au>Fohlerová, Zdenka</au><au>Svatoš, Vojtěch</au><au>Pekárek, Jan</au><au>Kurdík, Stanislav</au><au>Feng, Jianguo</au><au>Fecko, Peter</au><au>Podešva, Pavel</au><au>Hubálek, Jaromír</au><au>Neužil, Pavel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>22</volume><issue>9</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>105</artnum><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>We developed an advanced method for fabricating microfluidic structures comprising channels and inputs/outputs buried within a silicon wafer based on single level lithography. We etched trenches into a silicon substrate, covered these trenches with parylene-C, and selectively opened their bottoms using femtosecond laser photoablation, forming channels and inputs/outputs by isotropic etching of silicon by xenon difluoride vapors. We subsequently sealed the channels with a second parylene-C layer. Unlike in previously published works, this entire process is conducted at ambient temperature to allow for integration with complementary metal oxide semiconductor devices for smart readout electronics. We also demonstrated a method of chip cryo-cleaving with parylene presence that allows for monitoring of the process development. We also created an observation window for in situ visualization inside the opaque silicon substrate by forming a hole in the parylene layer at the silicon backside and with local silicon removal by xenon difluoride vapor etching. We verified the microfluidic chip performance by forming a segmented flow of a fluorescein solution in an oil stream. This proposed technique provides opportunities for forming simple microfluidic systems with buried channels at ambient temperature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-018-2125-6</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4218-1287</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-4982
ispartof Microfluidics and nanofluidics, 2018-09, Vol.22 (9), p.1-7, Article 105
issn 1613-4982
1613-4990
language eng
recordid cdi_proquest_journals_2098963319
source SpringerLink Journals - AutoHoldings
subjects Ambient temperature
Analytical Chemistry
Biomedical Engineering and Bioengineering
Buried structures
Channels
Electronic devices
Engineering
Engineering Fluid Dynamics
Etching
Fabrication
Fluorescein
Forming
Laser ablation
Lasers
Metal oxide semiconductors
Metals
Methods
MOS devices
Nanotechnology and Microengineering
Removal
Semiconductor devices
Semiconductors
Short Communication
Silicon
Silicon substrates
Silicon wafers
Temperature
Trenches
Vapors
Xenon
title Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20buried%20microfluidic%20channels%20with%20observation%20windows%20using%20femtosecond%20laser%20photoablation%20and%20parylene-C%20coating&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Gablech,%20Imrich&rft.date=2018-09-01&rft.volume=22&rft.issue=9&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=105&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-018-2125-6&rft_dat=%3Cproquest_cross%3E2098963319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098963319&rft_id=info:pmid/&rfr_iscdi=true