Randomized Polynomial-Time Root Counting in Prime Power Rings

Suppose \(k,p\!\in\!\mathbb{N}\) with \(p\) prime and \(f\!\in\!\mathbb{Z}[x]\) is a univariate polynomial with degree \(d\) and all coefficients having absolute value less than \(p^k\). We give a Las Vegas randomized algorithm that computes the number of roots of \(f\) in \(\mathbb{Z}/\!\left(p^k\r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-02
Hauptverfasser: Kopp, Leann, Randall, Natalie, Rojas, J Maurice, Zhu, Yuyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose \(k,p\!\in\!\mathbb{N}\) with \(p\) prime and \(f\!\in\!\mathbb{Z}[x]\) is a univariate polynomial with degree \(d\) and all coefficients having absolute value less than \(p^k\). We give a Las Vegas randomized algorithm that computes the number of roots of \(f\) in \(\mathbb{Z}/\!\left(p^k\right)\) within time \(d^3(k\log p)^{2+o(1)}\). (We in fact prove a more intricate complexity bound that is slightly better.) The best previous general algorithm had (deterministic) complexity exponential in \(k\). We also present some experimental data evincing the potential practicality of our algorithm.
ISSN:2331-8422