Calderón preconditioning of PMCHWT boundary integral equations for scattering by multiple absorbing dielectric particles

We consider the simulation of electromagnetic scattering by single and multiple isotropic homogeneous dielectric particles using boundary integral equations. Galerkin discretizations of the classical Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) boundary integral equation formulation provide accur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-11
Hauptverfasser: Kleanthous, Antigoni, Betcke, Timo, Hewett, David P, Scroggs, Matthew W, Baran, Anthony J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the simulation of electromagnetic scattering by single and multiple isotropic homogeneous dielectric particles using boundary integral equations. Galerkin discretizations of the classical Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) boundary integral equation formulation provide accurate solutions for complex particle geometries, but are well-known to lead to ill-conditioned linear systems. In this paper we carry out an experimental investigation into the performance of Calderón preconditioning techniques for single and multiple absorbing obstacles, which involve a squaring of the PMCHWT operator to produce a well-conditioned second-kind formulation. For single-particle scattering configurations we find that Calderón preconditioning is actually often outperformed by simple "mass-matrix" preconditioning, i.e. working with the strong form of the discretized PMCHWT operator. In the case of scattering by multiple particles we find that a significant saving in computational cost can be obtained by performing block-diagonal Calderón preconditioning in which only the self-interaction blocks are preconditioned. Using the boundary element software library Bempp (www.bempp.com) the numerical performance of the different methods is compared for a range of wavenumbers, particle geometries and complex refractive indices relevant to the scattering of light by atmospheric ice crystals.
ISSN:2331-8422
DOI:10.48550/arxiv.1808.10539