Simulation of cyclic strength degradation of natural clays via bounding surface model with hybrid flow rule

Summary Strength loss of natural clays subjected to seismic loading is a critical factor contributing to earthquake‐induced ground failure and associated hazards. This work proposes a bounding surface constitutive law to simulate cyclic strength degradation of natural clays resulting from the loss o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2018-10, Vol.42 (14), p.1719-1740
Hauptverfasser: Felix, Darve, Shi, Z., Buscarnera, G., Finno, R. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Strength loss of natural clays subjected to seismic loading is a critical factor contributing to earthquake‐induced ground failure and associated hazards. This work proposes a bounding surface constitutive law to simulate cyclic strength degradation of natural clays resulting from the loss of structure and attendant accumulation of excess pore pressures. The proposed model employs an enhanced plastic flow rule that can simulate accurately the development of pore pressure and explicitly incorporates soil structure effects. The validation of the model with reference to the experimental evidence available for 3 structured clays shows that with a single set of parameters the proposed model can reasonably represent the mechanical behavior of natural clays under various loading conditions (1D compression, monotonic shearing in compression and extension, cyclic loading, and postcyclic shearing). Particularly, its satisfactory performance in terms of quantification of cyclic strength degradation encourages the use of the model in simulating boundary value problems related to the stability of geotechnical facilities under earthquakes.
ISSN:0363-9061
1096-9853
DOI:10.1002/nag.2813