Estimates of Functions, Orthogonal to Piecewise Constant Functions, in Terms of the Second Modulus of Continuity

The paper is devoted to the problem of finding the exact constant W 2 ∗ in the inequality ‖ f ‖ ≤  K  ⋅  ω 2 ( f , 1) for bounded functions f with the property ∫ k k + 1 f x dx = 0 , k ∈ ℤ . Our approach allows us to reduce the known range for the desired constant as well as the set of functions inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2018-10, Vol.234 (3), p.330-337
1. Verfasser: Ikhsanov, L. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper is devoted to the problem of finding the exact constant W 2 ∗ in the inequality ‖ f ‖ ≤  K  ⋅  ω 2 ( f , 1) for bounded functions f with the property ∫ k k + 1 f x dx = 0 , k ∈ ℤ . Our approach allows us to reduce the known range for the desired constant as well as the set of functions involved in the extremal problem for finding the constant in question. It is shown that W 2 ∗ also turns out to be the exact constant in a related Jackson–Stechkin type inequality.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-018-4008-5