Electrical Properties of Indium Aluminum Zinc Oxide Thin Film Transistors
In this study, radio-frequency (RF) magnetron sputtering was used to deposit a 50 nm indium aluminum zinc oxide (IAZO) channel layer, following which a bottom-gate thin-film transistor (TFT) was fabricated. The oxygen ratio for the IAZO thin film was modulated from 0% to 6%. The film remained amorph...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2018-11, Vol.47 (11), p.6923-6928 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, radio-frequency (RF) magnetron sputtering was used to deposit a 50 nm indium aluminum zinc oxide (IAZO) channel layer, following which a bottom-gate thin-film transistor (TFT) was fabricated. The oxygen ratio for the IAZO thin film was modulated from 0% to 6%. The film remained amorphous at annealing temperatures of 300°C and 500°C. Analysis of optical properties (performed via UV–Vis spectroscopy) shows that the bandgap increased from 5.24 eV to 5.32 eV when the oxygen flow ratio increased from 0% to 4%. The bandgap decreased to 5.19 eV when the flow ratio reached 6%. An appropriate variation of the O
2
/Ar flow ratio filled oxygen vacancies and improved the electrical properties; however, a higher oxygen ratio led to the regeneration of oxygen vacancies and degraded the device. TFTs with an oxygen flow ratio of 2% had a high mobility of 5.67 cm
2
/Vs,
I
on
/
I
off
3.37 × 10
6
, and S.S. 0.61 V/dec. |
---|---|
ISSN: | 0361-5235 1543-186X |
DOI: | 10.1007/s11664-018-6618-6 |