Ecosystem services and land sparing potential of urban and peri-urban agriculture: A review

Agricultural expansion contributes to the degradation of biodiverse ecosystems and the services these systems provide. Expansion of urban and peri-urban agriculture (UPA), on the other hand, may hold promise to both expand the portfolio of ecosystem services (ES) available in built environments, whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable agriculture and food systems 2018-10, Vol.33 (5), p.481-494
Hauptverfasser: Wilhelm, Jennifer A., Smith, Richard G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Agricultural expansion contributes to the degradation of biodiverse ecosystems and the services these systems provide. Expansion of urban and peri-urban agriculture (UPA), on the other hand, may hold promise to both expand the portfolio of ecosystem services (ES) available in built environments, where ES are typically low and to reduce pressure to convert sensitive non-urban, non-agricultural ecosystems to agriculture. However, few data are available to support these hypotheses. Here we review and summarize the research conducted on UPA from 320 peer-reviewed papers published between 2000 and 2014. Specifically, we explored the availability of data regarding UPA's impact on ES and disservices. We also assessed the literature for evidence that UPA can contribute to land sparing. We find that the growth in UPA research over this time period points to the emerging recognition of the potential role that UPA systems play in food production worldwide. However, few studies (n = 15) place UPA in the context of ES, and no studies in our review explicitly quantify the land sparing potential of UPA. Additionally, while few studies (n = 19) quantify production potential of UPA, data that are necessary to accurately quantify the role these systems can play in land sparing, our rough estimates suggest that agricultural extensification into the world's urban environments via UPA could spare an area approximately twice the size of the US state of Massachusetts. Expanding future UPA research to include quantification of ES and functions would shed light on the ecological tradeoffs associated with agricultural production in the built environment. As food demand increases and urban populations continue to grow, it will be critical to better understand the role urban environments can play in global agricultural production and ecosystem preservation.
ISSN:1742-1705
1742-1713
DOI:10.1017/S1742170517000205