Spin control in reduced-dimensional chiral perovskites

Hybrid organic–inorganic perovskites exhibit strong spin–orbit coupling 1 , spin-dependent optical selection rules 2 , 3 and large Rashba splitting 4 – 8 . These characteristics make them promising candidates for spintronic devices 9 with photonic interfaces. Here we report that spin polarization in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2018-09, Vol.12 (9), p.528-533
Hauptverfasser: Long, Guankui, Jiang, Chongyun, Sabatini, Randy, Yang, Zhenyu, Wei, Mingyang, Quan, Li Na, Liang, Qiuming, Rasmita, Abdullah, Askerka, Mikhail, Walters, Grant, Gong, Xiwen, Xing, Jun, Wen, Xinglin, Quintero-Bermudez, Rafael, Yuan, Haifeng, Xing, Guichuan, Wang, X. Renshaw, Song, Datong, Voznyy, Oleksandr, Zhang, Mingtao, Hoogland, Sjoerd, Gao, Weibo, Xiong, Qihua, Sargent, Edward H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 533
container_issue 9
container_start_page 528
container_title Nature photonics
container_volume 12
creator Long, Guankui
Jiang, Chongyun
Sabatini, Randy
Yang, Zhenyu
Wei, Mingyang
Quan, Li Na
Liang, Qiuming
Rasmita, Abdullah
Askerka, Mikhail
Walters, Grant
Gong, Xiwen
Xing, Jun
Wen, Xinglin
Quintero-Bermudez, Rafael
Yuan, Haifeng
Xing, Guichuan
Wang, X. Renshaw
Song, Datong
Voznyy, Oleksandr
Zhang, Mingtao
Hoogland, Sjoerd
Gao, Weibo
Xiong, Qihua
Sargent, Edward H.
description Hybrid organic–inorganic perovskites exhibit strong spin–orbit coupling 1 , spin-dependent optical selection rules 2 , 3 and large Rashba splitting 4 – 8 . These characteristics make them promising candidates for spintronic devices 9 with photonic interfaces. Here we report that spin polarization in perovskites can be controlled through chemical design as well as by a magnetic field. We obtain both spin-polarized photon absorption and spin-polarized photoluminescence in reduced-dimensional chiral perovskites through combined strategies of chirality transfer and energy funnelling. A 3% spin-polarized photoluminescence is observed even in the absence of an applied external magnetic field owing to the different emission rates of σ + and σ − polarized photoluminescence. Three-dimensional perovskites achieve a comparable degree of photoluminescence polarization only under an external magnetic field of 5 T. Our findings pave the way for chiral perovskites as powerful spintronic materials. Spin-polarized photon absorption and photoluminescence are reported in reduced-dimensional chiral perovskite materials. The finding indicates that such materials may in the future be useful as a photonic interface for spintronics.
doi_str_mv 10.1038/s41566-018-0220-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2096531958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2096531958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-74f164619dcf1ca7757bf2312c1c9d990a4c0e8f28390b8f707587dbefe1bff03</originalsourceid><addsrcrecordid>eNp1kE1LAzEYhIMoWKs_wFvBc_R9k83XUYpfUPCgnsNuNtGt7WZNtoL_3pQVPXmaOcwMw0PIOcIlAtdXuUIhJQXUFBgDKg_IDFVlaKUNP_z1WhyTk5zXAIIbxmZEPg1dv3CxH1PcLIpNvt0539K22_o-d7GvNwv31qUig0_xM793o8-n5CjUm-zPfnROXm5vnpf3dPV497C8XlHHhRmpqgLKSqJpXUBXKyVUExhH5tCZ1hioKwdeB6a5gUYHBUpo1TY-eGxCAD4nF9PukOLHzufRruMulU_ZMjBScDRClxROKZdizskHO6RuW6cvi2D3eOyExxY8do_HytJhUyeXbP_q09_y_6VvhG1niw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2096531958</pqid></control><display><type>article</type><title>Spin control in reduced-dimensional chiral perovskites</title><source>Springer Online Journals Complete</source><source>Nature Journals Online</source><creator>Long, Guankui ; Jiang, Chongyun ; Sabatini, Randy ; Yang, Zhenyu ; Wei, Mingyang ; Quan, Li Na ; Liang, Qiuming ; Rasmita, Abdullah ; Askerka, Mikhail ; Walters, Grant ; Gong, Xiwen ; Xing, Jun ; Wen, Xinglin ; Quintero-Bermudez, Rafael ; Yuan, Haifeng ; Xing, Guichuan ; Wang, X. Renshaw ; Song, Datong ; Voznyy, Oleksandr ; Zhang, Mingtao ; Hoogland, Sjoerd ; Gao, Weibo ; Xiong, Qihua ; Sargent, Edward H.</creator><creatorcontrib>Long, Guankui ; Jiang, Chongyun ; Sabatini, Randy ; Yang, Zhenyu ; Wei, Mingyang ; Quan, Li Na ; Liang, Qiuming ; Rasmita, Abdullah ; Askerka, Mikhail ; Walters, Grant ; Gong, Xiwen ; Xing, Jun ; Wen, Xinglin ; Quintero-Bermudez, Rafael ; Yuan, Haifeng ; Xing, Guichuan ; Wang, X. Renshaw ; Song, Datong ; Voznyy, Oleksandr ; Zhang, Mingtao ; Hoogland, Sjoerd ; Gao, Weibo ; Xiong, Qihua ; Sargent, Edward H.</creatorcontrib><description>Hybrid organic–inorganic perovskites exhibit strong spin–orbit coupling 1 , spin-dependent optical selection rules 2 , 3 and large Rashba splitting 4 – 8 . These characteristics make them promising candidates for spintronic devices 9 with photonic interfaces. Here we report that spin polarization in perovskites can be controlled through chemical design as well as by a magnetic field. We obtain both spin-polarized photon absorption and spin-polarized photoluminescence in reduced-dimensional chiral perovskites through combined strategies of chirality transfer and energy funnelling. A 3% spin-polarized photoluminescence is observed even in the absence of an applied external magnetic field owing to the different emission rates of σ + and σ − polarized photoluminescence. Three-dimensional perovskites achieve a comparable degree of photoluminescence polarization only under an external magnetic field of 5 T. Our findings pave the way for chiral perovskites as powerful spintronic materials. Spin-polarized photon absorption and photoluminescence are reported in reduced-dimensional chiral perovskite materials. The finding indicates that such materials may in the future be useful as a photonic interface for spintronics.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-018-0220-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1019 ; 639/301/1019/1020 ; 639/638/298 ; Applied and Technical Physics ; Chirality ; Interfaces ; Letter ; Luminescence ; Magnetic fields ; Organic chemistry ; Perovskites ; Photoluminescence ; Photon absorption ; Photonics ; Photons ; Physics ; Physics and Astronomy ; Polarization ; Polarization (spin alignment) ; Quantum Physics</subject><ispartof>Nature photonics, 2018-09, Vol.12 (9), p.528-533</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-74f164619dcf1ca7757bf2312c1c9d990a4c0e8f28390b8f707587dbefe1bff03</citedby><cites>FETCH-LOGICAL-c359t-74f164619dcf1ca7757bf2312c1c9d990a4c0e8f28390b8f707587dbefe1bff03</cites><orcidid>0000-0003-0396-6495 ; 0000-0003-4499-4062 ; 0000-0003-4004-1299 ; 0000-0002-1826-3736 ; 0000-0002-8656-5074 ; 0000-0002-6403-8679 ; 0000-0001-9301-3764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-018-0220-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-018-0220-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Long, Guankui</creatorcontrib><creatorcontrib>Jiang, Chongyun</creatorcontrib><creatorcontrib>Sabatini, Randy</creatorcontrib><creatorcontrib>Yang, Zhenyu</creatorcontrib><creatorcontrib>Wei, Mingyang</creatorcontrib><creatorcontrib>Quan, Li Na</creatorcontrib><creatorcontrib>Liang, Qiuming</creatorcontrib><creatorcontrib>Rasmita, Abdullah</creatorcontrib><creatorcontrib>Askerka, Mikhail</creatorcontrib><creatorcontrib>Walters, Grant</creatorcontrib><creatorcontrib>Gong, Xiwen</creatorcontrib><creatorcontrib>Xing, Jun</creatorcontrib><creatorcontrib>Wen, Xinglin</creatorcontrib><creatorcontrib>Quintero-Bermudez, Rafael</creatorcontrib><creatorcontrib>Yuan, Haifeng</creatorcontrib><creatorcontrib>Xing, Guichuan</creatorcontrib><creatorcontrib>Wang, X. Renshaw</creatorcontrib><creatorcontrib>Song, Datong</creatorcontrib><creatorcontrib>Voznyy, Oleksandr</creatorcontrib><creatorcontrib>Zhang, Mingtao</creatorcontrib><creatorcontrib>Hoogland, Sjoerd</creatorcontrib><creatorcontrib>Gao, Weibo</creatorcontrib><creatorcontrib>Xiong, Qihua</creatorcontrib><creatorcontrib>Sargent, Edward H.</creatorcontrib><title>Spin control in reduced-dimensional chiral perovskites</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Hybrid organic–inorganic perovskites exhibit strong spin–orbit coupling 1 , spin-dependent optical selection rules 2 , 3 and large Rashba splitting 4 – 8 . These characteristics make them promising candidates for spintronic devices 9 with photonic interfaces. Here we report that spin polarization in perovskites can be controlled through chemical design as well as by a magnetic field. We obtain both spin-polarized photon absorption and spin-polarized photoluminescence in reduced-dimensional chiral perovskites through combined strategies of chirality transfer and energy funnelling. A 3% spin-polarized photoluminescence is observed even in the absence of an applied external magnetic field owing to the different emission rates of σ + and σ − polarized photoluminescence. Three-dimensional perovskites achieve a comparable degree of photoluminescence polarization only under an external magnetic field of 5 T. Our findings pave the way for chiral perovskites as powerful spintronic materials. Spin-polarized photon absorption and photoluminescence are reported in reduced-dimensional chiral perovskite materials. The finding indicates that such materials may in the future be useful as a photonic interface for spintronics.</description><subject>639/301/1019</subject><subject>639/301/1019/1020</subject><subject>639/638/298</subject><subject>Applied and Technical Physics</subject><subject>Chirality</subject><subject>Interfaces</subject><subject>Letter</subject><subject>Luminescence</subject><subject>Magnetic fields</subject><subject>Organic chemistry</subject><subject>Perovskites</subject><subject>Photoluminescence</subject><subject>Photon absorption</subject><subject>Photonics</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization</subject><subject>Polarization (spin alignment)</subject><subject>Quantum Physics</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEYhIMoWKs_wFvBc_R9k83XUYpfUPCgnsNuNtGt7WZNtoL_3pQVPXmaOcwMw0PIOcIlAtdXuUIhJQXUFBgDKg_IDFVlaKUNP_z1WhyTk5zXAIIbxmZEPg1dv3CxH1PcLIpNvt0539K22_o-d7GvNwv31qUig0_xM793o8-n5CjUm-zPfnROXm5vnpf3dPV497C8XlHHhRmpqgLKSqJpXUBXKyVUExhH5tCZ1hioKwdeB6a5gUYHBUpo1TY-eGxCAD4nF9PukOLHzufRruMulU_ZMjBScDRClxROKZdizskHO6RuW6cvi2D3eOyExxY8do_HytJhUyeXbP_q09_y_6VvhG1niw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Long, Guankui</creator><creator>Jiang, Chongyun</creator><creator>Sabatini, Randy</creator><creator>Yang, Zhenyu</creator><creator>Wei, Mingyang</creator><creator>Quan, Li Na</creator><creator>Liang, Qiuming</creator><creator>Rasmita, Abdullah</creator><creator>Askerka, Mikhail</creator><creator>Walters, Grant</creator><creator>Gong, Xiwen</creator><creator>Xing, Jun</creator><creator>Wen, Xinglin</creator><creator>Quintero-Bermudez, Rafael</creator><creator>Yuan, Haifeng</creator><creator>Xing, Guichuan</creator><creator>Wang, X. Renshaw</creator><creator>Song, Datong</creator><creator>Voznyy, Oleksandr</creator><creator>Zhang, Mingtao</creator><creator>Hoogland, Sjoerd</creator><creator>Gao, Weibo</creator><creator>Xiong, Qihua</creator><creator>Sargent, Edward H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-0396-6495</orcidid><orcidid>https://orcid.org/0000-0003-4499-4062</orcidid><orcidid>https://orcid.org/0000-0003-4004-1299</orcidid><orcidid>https://orcid.org/0000-0002-1826-3736</orcidid><orcidid>https://orcid.org/0000-0002-8656-5074</orcidid><orcidid>https://orcid.org/0000-0002-6403-8679</orcidid><orcidid>https://orcid.org/0000-0001-9301-3764</orcidid></search><sort><creationdate>20180901</creationdate><title>Spin control in reduced-dimensional chiral perovskites</title><author>Long, Guankui ; Jiang, Chongyun ; Sabatini, Randy ; Yang, Zhenyu ; Wei, Mingyang ; Quan, Li Na ; Liang, Qiuming ; Rasmita, Abdullah ; Askerka, Mikhail ; Walters, Grant ; Gong, Xiwen ; Xing, Jun ; Wen, Xinglin ; Quintero-Bermudez, Rafael ; Yuan, Haifeng ; Xing, Guichuan ; Wang, X. Renshaw ; Song, Datong ; Voznyy, Oleksandr ; Zhang, Mingtao ; Hoogland, Sjoerd ; Gao, Weibo ; Xiong, Qihua ; Sargent, Edward H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-74f164619dcf1ca7757bf2312c1c9d990a4c0e8f28390b8f707587dbefe1bff03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301/1019</topic><topic>639/301/1019/1020</topic><topic>639/638/298</topic><topic>Applied and Technical Physics</topic><topic>Chirality</topic><topic>Interfaces</topic><topic>Letter</topic><topic>Luminescence</topic><topic>Magnetic fields</topic><topic>Organic chemistry</topic><topic>Perovskites</topic><topic>Photoluminescence</topic><topic>Photon absorption</topic><topic>Photonics</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization</topic><topic>Polarization (spin alignment)</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Guankui</creatorcontrib><creatorcontrib>Jiang, Chongyun</creatorcontrib><creatorcontrib>Sabatini, Randy</creatorcontrib><creatorcontrib>Yang, Zhenyu</creatorcontrib><creatorcontrib>Wei, Mingyang</creatorcontrib><creatorcontrib>Quan, Li Na</creatorcontrib><creatorcontrib>Liang, Qiuming</creatorcontrib><creatorcontrib>Rasmita, Abdullah</creatorcontrib><creatorcontrib>Askerka, Mikhail</creatorcontrib><creatorcontrib>Walters, Grant</creatorcontrib><creatorcontrib>Gong, Xiwen</creatorcontrib><creatorcontrib>Xing, Jun</creatorcontrib><creatorcontrib>Wen, Xinglin</creatorcontrib><creatorcontrib>Quintero-Bermudez, Rafael</creatorcontrib><creatorcontrib>Yuan, Haifeng</creatorcontrib><creatorcontrib>Xing, Guichuan</creatorcontrib><creatorcontrib>Wang, X. Renshaw</creatorcontrib><creatorcontrib>Song, Datong</creatorcontrib><creatorcontrib>Voznyy, Oleksandr</creatorcontrib><creatorcontrib>Zhang, Mingtao</creatorcontrib><creatorcontrib>Hoogland, Sjoerd</creatorcontrib><creatorcontrib>Gao, Weibo</creatorcontrib><creatorcontrib>Xiong, Qihua</creatorcontrib><creatorcontrib>Sargent, Edward H.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Guankui</au><au>Jiang, Chongyun</au><au>Sabatini, Randy</au><au>Yang, Zhenyu</au><au>Wei, Mingyang</au><au>Quan, Li Na</au><au>Liang, Qiuming</au><au>Rasmita, Abdullah</au><au>Askerka, Mikhail</au><au>Walters, Grant</au><au>Gong, Xiwen</au><au>Xing, Jun</au><au>Wen, Xinglin</au><au>Quintero-Bermudez, Rafael</au><au>Yuan, Haifeng</au><au>Xing, Guichuan</au><au>Wang, X. Renshaw</au><au>Song, Datong</au><au>Voznyy, Oleksandr</au><au>Zhang, Mingtao</au><au>Hoogland, Sjoerd</au><au>Gao, Weibo</au><au>Xiong, Qihua</au><au>Sargent, Edward H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin control in reduced-dimensional chiral perovskites</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>12</volume><issue>9</issue><spage>528</spage><epage>533</epage><pages>528-533</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Hybrid organic–inorganic perovskites exhibit strong spin–orbit coupling 1 , spin-dependent optical selection rules 2 , 3 and large Rashba splitting 4 – 8 . These characteristics make them promising candidates for spintronic devices 9 with photonic interfaces. Here we report that spin polarization in perovskites can be controlled through chemical design as well as by a magnetic field. We obtain both spin-polarized photon absorption and spin-polarized photoluminescence in reduced-dimensional chiral perovskites through combined strategies of chirality transfer and energy funnelling. A 3% spin-polarized photoluminescence is observed even in the absence of an applied external magnetic field owing to the different emission rates of σ + and σ − polarized photoluminescence. Three-dimensional perovskites achieve a comparable degree of photoluminescence polarization only under an external magnetic field of 5 T. Our findings pave the way for chiral perovskites as powerful spintronic materials. Spin-polarized photon absorption and photoluminescence are reported in reduced-dimensional chiral perovskite materials. The finding indicates that such materials may in the future be useful as a photonic interface for spintronics.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-018-0220-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0396-6495</orcidid><orcidid>https://orcid.org/0000-0003-4499-4062</orcidid><orcidid>https://orcid.org/0000-0003-4004-1299</orcidid><orcidid>https://orcid.org/0000-0002-1826-3736</orcidid><orcidid>https://orcid.org/0000-0002-8656-5074</orcidid><orcidid>https://orcid.org/0000-0002-6403-8679</orcidid><orcidid>https://orcid.org/0000-0001-9301-3764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2018-09, Vol.12 (9), p.528-533
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2096531958
source Springer Online Journals Complete; Nature Journals Online
subjects 639/301/1019
639/301/1019/1020
639/638/298
Applied and Technical Physics
Chirality
Interfaces
Letter
Luminescence
Magnetic fields
Organic chemistry
Perovskites
Photoluminescence
Photon absorption
Photonics
Photons
Physics
Physics and Astronomy
Polarization
Polarization (spin alignment)
Quantum Physics
title Spin control in reduced-dimensional chiral perovskites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20control%20in%20reduced-dimensional%20chiral%20perovskites&rft.jtitle=Nature%20photonics&rft.au=Long,%20Guankui&rft.date=2018-09-01&rft.volume=12&rft.issue=9&rft.spage=528&rft.epage=533&rft.pages=528-533&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-018-0220-6&rft_dat=%3Cproquest_cross%3E2096531958%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2096531958&rft_id=info:pmid/&rfr_iscdi=true