New fractional derivatives applied to the Korteweg–de Vries and Korteweg–de Vries–Burger’s equations
In this paper, we extend the model of the Korteweg–de Vries (KDV) and Korteweg–de Vries–Burger’s (KDVB) to new model time fractional Korteweg–de Vries (TFKDV) and time fractional Korteweg–de Vries-Burger’s (TFKDVB) with Liouville–Caputo (LC), Caputo–Fabrizio (CF), and Atangana-Baleanu (AB) fractiona...
Gespeichert in:
Veröffentlicht in: | Computation and applied mathematics 2018-09, Vol.37 (4), p.5203-5216 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we extend the model of the Korteweg–de Vries (KDV) and Korteweg–de Vries–Burger’s (KDVB) to new model time fractional Korteweg–de Vries (TFKDV) and time fractional Korteweg–de Vries-Burger’s (TFKDVB) with Liouville–Caputo (LC), Caputo–Fabrizio (CF), and Atangana-Baleanu (AB) fractional time derivative equations, respectively. We utilize the q-homotopy analysis transform method (q-HATM) to compute the approximate solutions of TFKDV and TFKDVB using LC, CF and AB in Liouville–Caputo sense. We study the convergence analysis of q-HATM by computing the Residual Error Function (REF) and finding the interval of the convergence through the
h
-curves. Also, we find the optimal values of
h
so that, we assure the convergence of the approximate solutions. The results are very effective and accurate in solving the TFKDV and TFKDVB. |
---|---|
ISSN: | 0101-8205 2238-3603 1807-0302 |
DOI: | 10.1007/s40314-018-0627-1 |