Seawater desalination using pillared graphene as a novel nano-membrane in reverse osmosis process: nonequilibrium MD simulation study

Herein, the applicability and efficiency of two types of pillared graphene nanostructures, namely, (6,6)@G and (7,7)@G, were investigated as membranes in reverse osmosis seawater desalination using extensive nonequilibrium molecular dynamics simulations. The water permeability for (6,6)@G and (7,7)@...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2018, Vol.2 (34), p.22241-22248
Hauptverfasser: Mahdizadeh, Sayyed Jalil, Goharshadi, Elaheh K, Akhlamadi, Golnoosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, the applicability and efficiency of two types of pillared graphene nanostructures, namely, (6,6)@G and (7,7)@G, were investigated as membranes in reverse osmosis seawater desalination using extensive nonequilibrium molecular dynamics simulations. The water permeability for (6,6)@G and (7,7)@G membranes was estimated at 4.2 and 6.6 L h −1 cm −2 MPa −1 , respectively. According to the results, a complete (100%) and pressure-independent salt rejection was estimated for both membranes. In addition, the mechanism of seawater desalination through the pillared graphene membranes was investigated via the density distribution profile of water molecules inside the pillar channels. Furthermore, a series of steered MD simulations were performed to construct the potential of mean force (PMF) profile of water molecules and salt ions passing through the membranes channels. The passing free energy barriers of Na + and Cl − ions and water molecules are 0.86, 0.62, and 0.22 eV, respectively, for the (6,6)@G membrane. The corresponding quantities for the (7,7)@G membrane are 0.71, 0.44, and 0.11 eV, respectively. Herein, the applicability and efficiency of two types of pillared graphene nanostructures, namely, (6,6)@G and (7,7)@G, were investigated as membranes in reverse osmosis seawater desalination using extensive nonequilibrium molecular dynamics simulations.
ISSN:1463-9076
1463-9084
DOI:10.1039/c8cp02820f