Maximizing monotone submodular functions over the integer lattice

The problem of maximizing non-negative monotone submodular functions under a certain constraint has been intensively studied in the last decade. In this paper, we address the problem for functions defined over the integer lattice. Suppose that a non-negative monotone submodular function f : Z + n →...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2018-11, Vol.172 (1-2), p.539-563
Hauptverfasser: Soma, Tasuku, Yoshida, Yuichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of maximizing non-negative monotone submodular functions under a certain constraint has been intensively studied in the last decade. In this paper, we address the problem for functions defined over the integer lattice. Suppose that a non-negative monotone submodular function f : Z + n → R + is given via an evaluation oracle. Assume further that f satisfies the diminishing return property, which is not an immediate consequence of submodularity when the domain is the integer lattice. Given this, we design polynomial-time ( 1 - 1 / e - ϵ ) -approximation algorithms for a cardinality constraint, a polymatroid constraint, and a knapsack constraint. For a cardinality constraint, we also provide a ( 1 - 1 / e - ϵ ) -approximation algorithm with slightly worse time complexity that does not rely on the diminishing return property.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-018-1324-y