Deformation quantisation for unshifted symplectic structures on derived Artin stacks

We prove that every 0-shifted symplectic structure on a derived Artin n -stack admits a curved A ∞ deformation quantisation. The classical method of quantising smooth varieties via quantisations of affine space does not apply in this setting, so we develop a new approach. We construct a map from DQ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2018-09, Vol.24 (4), p.3027-3059
1. Verfasser: Pridham, J. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that every 0-shifted symplectic structure on a derived Artin n -stack admits a curved A ∞ deformation quantisation. The classical method of quantising smooth varieties via quantisations of affine space does not apply in this setting, so we develop a new approach. We construct a map from DQ algebroid quantisations of unshifted symplectic structures on a derived Artin n -stack to power series in de Rham cohomology, depending only on a choice of Drinfeld associator. This gives an equivalence between even power series and certain involutive quantisations, which yield anti-involutive curved A ∞ deformations of the dg category of perfect complexes. In particular, there is a canonical quantisation associated to every symplectic structure on such a stack, which agrees for smooth varieties with the Kontsevich–Tamarkin quantisation for even associators.
ISSN:1022-1824
1420-9020
DOI:10.1007/s00029-018-0414-2