Fluorescence Blinking Beyond Nanoconfinement: Spatially Synchronous Intermittency of Entire Perovskite Microcrystals

Abrupt fluorescence intermittency or blinking is long recognized to be characteristic of single nano‐emitters. Extended quantum‐confined nanostructures also undergo spatially heterogeneous blinking; however, there is no such precedent in dimensionally unconfined (bulk) materials. Herein, we report m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2018-09, Vol.130 (36), p.11777-11781
Hauptverfasser: Pathoor, Nithin, Halder, Ansuman, Mukherjee, Amitrajit, Mahato, Jaladhar, Sarkar, Shaibal K., Chowdhury, Arindam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abrupt fluorescence intermittency or blinking is long recognized to be characteristic of single nano‐emitters. Extended quantum‐confined nanostructures also undergo spatially heterogeneous blinking; however, there is no such precedent in dimensionally unconfined (bulk) materials. Herein, we report multi‐level blinking of entire individual organo–lead bromide perovskite microcrystals (volume=0.1–3 μm3) under ambient conditions. Extremely high spatiotemporal correlation (>0.9) in intracrystal emission intensity fluctuations signifies effective communication amongst photogenerated carriers at distal locations (up to ca. 4 μm) within each crystal. Fused polycrystalline grains also exhibit this intriguing phenomenon, which is rationalized by correlated and efficient migration of carriers to a few transient nonradiative traps, the nature and population of which determine blinking propensity. Observation of spatiotemporally correlated emission intermittency in bulk semiconductor crystals opens the possibility of designing novel devices involving long‐range (mesoscopic) electronic communication. Räumlich und zeitlich korreliertes Aussetzen einer Fluoreszenz wurde für ganze Mikrokristalle eines Metallhalogenid‐Perowskits mit organischen Kationen in polykristallinem Material beobachtet. Dieses Ergebnis lässt auf eine Kommunikation über sehr lange Distanzen (>μm) zwischen photogenerierten Ladungsträgern schließen. Somit ist keine Quanteneingrenzung im Nanometerbereich für das Photolumineszenz‐Blinken erforderlich.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201804852