Proximal primal–dual best approximation algorithm with memory

We propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2018-12, Vol.71 (3), p.767-794
Hauptverfasser: Bednarczuk, E. M., Jezierska, A., Rutkowski, K. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 794
container_issue 3
container_start_page 767
container_title Computational optimization and applications
container_volume 71
creator Bednarczuk, E. M.
Jezierska, A.
Rutkowski, K. E.
description We propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate. To this end we consider projections onto intersections of halfspaces generated on the basis of the current as well as the previous iterates. To calculate these projections we are using recently obtained closed-form expressions for projectors onto polyhedral sets. The resulting algorithm with memory inherits strong convergence properties of the original best approximation proximal primal–dual algorithm. Additionally, we compare our algorithm with the original (non-inertial) one with the help of the so called attraction property defined below. Extensive numerical experimental results on image reconstruction problems illustrate the advantages of including memory into the original algorithm.
doi_str_mv 10.1007/s10589-018-0031-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2093908448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093908448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-ff94ba67c46ca5d8c2fd5a585e667b8baa33c443b53ddc826ea48660ecf3ba7c3</originalsourceid><addsrcrecordid>eNp1UMtKBDEQDKLguvoB3gY8RzvPSU4iiy9Y0IOeQyaTWWfZeZjMoHvzH_xDv8SsI3jy0kXTVdXdhdApgXMCkF9EAkJpDERhAEYw2UMzInKGqdJ8H81AU4llGh2ioxjXAKBzRmfo8jF073VjN1kfdvD18VmOqSt8HDLb99N0qLs2s5tVF-rhpcneUs0a33Rhe4wOKruJ_uQX5-j55vppcYeXD7f3i6sldoyQAVeV5oWVuePSWVEqR6tSWKGElzIvVGEtY45zVghWlk5R6S1XUoJ3FSts7tgcnU2-6aLXMR1n1t0Y2rTSUNBMg-JcJRaZWC50MQZfmZ-vwtYQMLuczJSTSTmZXU6GJA2dNDFx25UPf87_i74B86Ns3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093908448</pqid></control><display><type>article</type><title>Proximal primal–dual best approximation algorithm with memory</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Bednarczuk, E. M. ; Jezierska, A. ; Rutkowski, K. E.</creator><creatorcontrib>Bednarczuk, E. M. ; Jezierska, A. ; Rutkowski, K. E.</creatorcontrib><description>We propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate. To this end we consider projections onto intersections of halfspaces generated on the basis of the current as well as the previous iterates. To calculate these projections we are using recently obtained closed-form expressions for projectors onto polyhedral sets. The resulting algorithm with memory inherits strong convergence properties of the original best approximation proximal primal–dual algorithm. Additionally, we compare our algorithm with the original (non-inertial) one with the help of the so called attraction property defined below. Extensive numerical experimental results on image reconstruction problems illustrate the advantages of including memory into the original algorithm.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-018-0031-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Computer memory ; Convex and Discrete Geometry ; Image reconstruction ; Intersections ; Management Science ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Projectors ; Statistics</subject><ispartof>Computational optimization and applications, 2018-12, Vol.71 (3), p.767-794</ispartof><rights>The Author(s) 2018</rights><rights>Computational Optimization and Applications is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-ff94ba67c46ca5d8c2fd5a585e667b8baa33c443b53ddc826ea48660ecf3ba7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-018-0031-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-018-0031-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Bednarczuk, E. M.</creatorcontrib><creatorcontrib>Jezierska, A.</creatorcontrib><creatorcontrib>Rutkowski, K. E.</creatorcontrib><title>Proximal primal–dual best approximation algorithm with memory</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>We propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate. To this end we consider projections onto intersections of halfspaces generated on the basis of the current as well as the previous iterates. To calculate these projections we are using recently obtained closed-form expressions for projectors onto polyhedral sets. The resulting algorithm with memory inherits strong convergence properties of the original best approximation proximal primal–dual algorithm. Additionally, we compare our algorithm with the original (non-inertial) one with the help of the so called attraction property defined below. Extensive numerical experimental results on image reconstruction problems illustrate the advantages of including memory into the original algorithm.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer memory</subject><subject>Convex and Discrete Geometry</subject><subject>Image reconstruction</subject><subject>Intersections</subject><subject>Management Science</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Projectors</subject><subject>Statistics</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtKBDEQDKLguvoB3gY8RzvPSU4iiy9Y0IOeQyaTWWfZeZjMoHvzH_xDv8SsI3jy0kXTVdXdhdApgXMCkF9EAkJpDERhAEYw2UMzInKGqdJ8H81AU4llGh2ioxjXAKBzRmfo8jF073VjN1kfdvD18VmOqSt8HDLb99N0qLs2s5tVF-rhpcneUs0a33Rhe4wOKruJ_uQX5-j55vppcYeXD7f3i6sldoyQAVeV5oWVuePSWVEqR6tSWKGElzIvVGEtY45zVghWlk5R6S1XUoJ3FSts7tgcnU2-6aLXMR1n1t0Y2rTSUNBMg-JcJRaZWC50MQZfmZ-vwtYQMLuczJSTSTmZXU6GJA2dNDFx25UPf87_i74B86Ns3Q</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Bednarczuk, E. M.</creator><creator>Jezierska, A.</creator><creator>Rutkowski, K. E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20181201</creationdate><title>Proximal primal–dual best approximation algorithm with memory</title><author>Bednarczuk, E. M. ; Jezierska, A. ; Rutkowski, K. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-ff94ba67c46ca5d8c2fd5a585e667b8baa33c443b53ddc826ea48660ecf3ba7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer memory</topic><topic>Convex and Discrete Geometry</topic><topic>Image reconstruction</topic><topic>Intersections</topic><topic>Management Science</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Projectors</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bednarczuk, E. M.</creatorcontrib><creatorcontrib>Jezierska, A.</creatorcontrib><creatorcontrib>Rutkowski, K. E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bednarczuk, E. M.</au><au>Jezierska, A.</au><au>Rutkowski, K. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proximal primal–dual best approximation algorithm with memory</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>71</volume><issue>3</issue><spage>767</spage><epage>794</epage><pages>767-794</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>We propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate. To this end we consider projections onto intersections of halfspaces generated on the basis of the current as well as the previous iterates. To calculate these projections we are using recently obtained closed-form expressions for projectors onto polyhedral sets. The resulting algorithm with memory inherits strong convergence properties of the original best approximation proximal primal–dual algorithm. Additionally, we compare our algorithm with the original (non-inertial) one with the help of the so called attraction property defined below. Extensive numerical experimental results on image reconstruction problems illustrate the advantages of including memory into the original algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-018-0031-1</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-6003
ispartof Computational optimization and applications, 2018-12, Vol.71 (3), p.767-794
issn 0926-6003
1573-2894
language eng
recordid cdi_proquest_journals_2093908448
source Business Source Complete; Springer Nature - Complete Springer Journals
subjects Algorithms
Approximation
Computer memory
Convex and Discrete Geometry
Image reconstruction
Intersections
Management Science
Mathematical analysis
Mathematics
Mathematics and Statistics
Operations Research
Operations Research/Decision Theory
Optimization
Projectors
Statistics
title Proximal primal–dual best approximation algorithm with memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proximal%20primal%E2%80%93dual%20best%20approximation%20algorithm%20with%20memory&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Bednarczuk,%20E.%20M.&rft.date=2018-12-01&rft.volume=71&rft.issue=3&rft.spage=767&rft.epage=794&rft.pages=767-794&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-018-0031-1&rft_dat=%3Cproquest_cross%3E2093908448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093908448&rft_id=info:pmid/&rfr_iscdi=true