Proximal primal–dual best approximation algorithm with memory
We propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate...
Gespeichert in:
Veröffentlicht in: | Computational optimization and applications 2018-12, Vol.71 (3), p.767-794 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 794 |
---|---|
container_issue | 3 |
container_start_page | 767 |
container_title | Computational optimization and applications |
container_volume | 71 |
creator | Bednarczuk, E. M. Jezierska, A. Rutkowski, K. E. |
description | We propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate. To this end we consider projections onto intersections of halfspaces generated on the basis of the current as well as the previous iterates. To calculate these projections we are using recently obtained closed-form expressions for projectors onto polyhedral sets. The resulting algorithm with memory inherits strong convergence properties of the original best approximation proximal primal–dual algorithm. Additionally, we compare our algorithm with the original (non-inertial) one with the help of the so called
attraction property
defined below. Extensive numerical experimental results on image reconstruction problems illustrate the advantages of including memory into the original algorithm. |
doi_str_mv | 10.1007/s10589-018-0031-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2093908448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093908448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-ff94ba67c46ca5d8c2fd5a585e667b8baa33c443b53ddc826ea48660ecf3ba7c3</originalsourceid><addsrcrecordid>eNp1UMtKBDEQDKLguvoB3gY8RzvPSU4iiy9Y0IOeQyaTWWfZeZjMoHvzH_xDv8SsI3jy0kXTVdXdhdApgXMCkF9EAkJpDERhAEYw2UMzInKGqdJ8H81AU4llGh2ioxjXAKBzRmfo8jF073VjN1kfdvD18VmOqSt8HDLb99N0qLs2s5tVF-rhpcneUs0a33Rhe4wOKruJ_uQX5-j55vppcYeXD7f3i6sldoyQAVeV5oWVuePSWVEqR6tSWKGElzIvVGEtY45zVghWlk5R6S1XUoJ3FSts7tgcnU2-6aLXMR1n1t0Y2rTSUNBMg-JcJRaZWC50MQZfmZ-vwtYQMLuczJSTSTmZXU6GJA2dNDFx25UPf87_i74B86Ns3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093908448</pqid></control><display><type>article</type><title>Proximal primal–dual best approximation algorithm with memory</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Bednarczuk, E. M. ; Jezierska, A. ; Rutkowski, K. E.</creator><creatorcontrib>Bednarczuk, E. M. ; Jezierska, A. ; Rutkowski, K. E.</creatorcontrib><description>We propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate. To this end we consider projections onto intersections of halfspaces generated on the basis of the current as well as the previous iterates. To calculate these projections we are using recently obtained closed-form expressions for projectors onto polyhedral sets. The resulting algorithm with memory inherits strong convergence properties of the original best approximation proximal primal–dual algorithm. Additionally, we compare our algorithm with the original (non-inertial) one with the help of the so called
attraction property
defined below. Extensive numerical experimental results on image reconstruction problems illustrate the advantages of including memory into the original algorithm.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-018-0031-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Computer memory ; Convex and Discrete Geometry ; Image reconstruction ; Intersections ; Management Science ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Projectors ; Statistics</subject><ispartof>Computational optimization and applications, 2018-12, Vol.71 (3), p.767-794</ispartof><rights>The Author(s) 2018</rights><rights>Computational Optimization and Applications is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-ff94ba67c46ca5d8c2fd5a585e667b8baa33c443b53ddc826ea48660ecf3ba7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-018-0031-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-018-0031-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Bednarczuk, E. M.</creatorcontrib><creatorcontrib>Jezierska, A.</creatorcontrib><creatorcontrib>Rutkowski, K. E.</creatorcontrib><title>Proximal primal–dual best approximation algorithm with memory</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>We propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate. To this end we consider projections onto intersections of halfspaces generated on the basis of the current as well as the previous iterates. To calculate these projections we are using recently obtained closed-form expressions for projectors onto polyhedral sets. The resulting algorithm with memory inherits strong convergence properties of the original best approximation proximal primal–dual algorithm. Additionally, we compare our algorithm with the original (non-inertial) one with the help of the so called
attraction property
defined below. Extensive numerical experimental results on image reconstruction problems illustrate the advantages of including memory into the original algorithm.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer memory</subject><subject>Convex and Discrete Geometry</subject><subject>Image reconstruction</subject><subject>Intersections</subject><subject>Management Science</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Projectors</subject><subject>Statistics</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtKBDEQDKLguvoB3gY8RzvPSU4iiy9Y0IOeQyaTWWfZeZjMoHvzH_xDv8SsI3jy0kXTVdXdhdApgXMCkF9EAkJpDERhAEYw2UMzInKGqdJ8H81AU4llGh2ioxjXAKBzRmfo8jF073VjN1kfdvD18VmOqSt8HDLb99N0qLs2s5tVF-rhpcneUs0a33Rhe4wOKruJ_uQX5-j55vppcYeXD7f3i6sldoyQAVeV5oWVuePSWVEqR6tSWKGElzIvVGEtY45zVghWlk5R6S1XUoJ3FSts7tgcnU2-6aLXMR1n1t0Y2rTSUNBMg-JcJRaZWC50MQZfmZ-vwtYQMLuczJSTSTmZXU6GJA2dNDFx25UPf87_i74B86Ns3Q</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Bednarczuk, E. M.</creator><creator>Jezierska, A.</creator><creator>Rutkowski, K. E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20181201</creationdate><title>Proximal primal–dual best approximation algorithm with memory</title><author>Bednarczuk, E. M. ; Jezierska, A. ; Rutkowski, K. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-ff94ba67c46ca5d8c2fd5a585e667b8baa33c443b53ddc826ea48660ecf3ba7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer memory</topic><topic>Convex and Discrete Geometry</topic><topic>Image reconstruction</topic><topic>Intersections</topic><topic>Management Science</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Projectors</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bednarczuk, E. M.</creatorcontrib><creatorcontrib>Jezierska, A.</creatorcontrib><creatorcontrib>Rutkowski, K. E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bednarczuk, E. M.</au><au>Jezierska, A.</au><au>Rutkowski, K. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proximal primal–dual best approximation algorithm with memory</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>71</volume><issue>3</issue><spage>767</spage><epage>794</epage><pages>767-794</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>We propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate. To this end we consider projections onto intersections of halfspaces generated on the basis of the current as well as the previous iterates. To calculate these projections we are using recently obtained closed-form expressions for projectors onto polyhedral sets. The resulting algorithm with memory inherits strong convergence properties of the original best approximation proximal primal–dual algorithm. Additionally, we compare our algorithm with the original (non-inertial) one with the help of the so called
attraction property
defined below. Extensive numerical experimental results on image reconstruction problems illustrate the advantages of including memory into the original algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-018-0031-1</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-6003 |
ispartof | Computational optimization and applications, 2018-12, Vol.71 (3), p.767-794 |
issn | 0926-6003 1573-2894 |
language | eng |
recordid | cdi_proquest_journals_2093908448 |
source | Business Source Complete; Springer Nature - Complete Springer Journals |
subjects | Algorithms Approximation Computer memory Convex and Discrete Geometry Image reconstruction Intersections Management Science Mathematical analysis Mathematics Mathematics and Statistics Operations Research Operations Research/Decision Theory Optimization Projectors Statistics |
title | Proximal primal–dual best approximation algorithm with memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proximal%20primal%E2%80%93dual%20best%20approximation%20algorithm%20with%20memory&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Bednarczuk,%20E.%20M.&rft.date=2018-12-01&rft.volume=71&rft.issue=3&rft.spage=767&rft.epage=794&rft.pages=767-794&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-018-0031-1&rft_dat=%3Cproquest_cross%3E2093908448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093908448&rft_id=info:pmid/&rfr_iscdi=true |