Proximal primal–dual best approximation algorithm with memory

We propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2018-12, Vol.71 (3), p.767-794
Hauptverfasser: Bednarczuk, E. M., Jezierska, A., Rutkowski, K. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate. To this end we consider projections onto intersections of halfspaces generated on the basis of the current as well as the previous iterates. To calculate these projections we are using recently obtained closed-form expressions for projectors onto polyhedral sets. The resulting algorithm with memory inherits strong convergence properties of the original best approximation proximal primal–dual algorithm. Additionally, we compare our algorithm with the original (non-inertial) one with the help of the so called attraction property defined below. Extensive numerical experimental results on image reconstruction problems illustrate the advantages of including memory into the original algorithm.
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-018-0031-1