Fluorination of Black Phosphorus—Will Black Phosphorus Burn Down in the Elemental Fluorine?

Black phosphorus (BP) represents a promising tunable bandgap alternative to graphene and other 2D materials in the field of semiconductors. However, its reactivity toward covalent modification of its surface (as a key to its bandgap adjustment) is scarcely reported. Here a method of covalent modific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2018-08, Vol.28 (35), p.n/a
Hauptverfasser: Plutnar, Jan, Šturala, Jiří, Mazánek, Vlastimil, Sofer, Zdeněk, Pumera, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Black phosphorus (BP) represents a promising tunable bandgap alternative to graphene and other 2D materials in the field of semiconductors. However, its reactivity toward covalent modification of its surface (as a key to its bandgap adjustment) is scarcely reported. Here a method of covalent modification of BP involving reaction with fluorine is reported. Other allotropes of phosphorus are known to react violently with fluorine resulting in its complete burning down and formation of gaseous phosphorus pentafluoride. The results of our fluorination experiments conducted in analogy to the procedures used for fluorination of graphene indicate a successful binding of fluorine to BP. This route of modification of BP opens new possible ways toward covalent modification of the surface of this promising material. Preparation of fluorinated black phosphorus involving reaction of black phosphorus with elemental fluorine is presented. Exposition of black phosphorus to elemental fluorine at room temperature results in non‐destructive introduction of fluorine atoms into the material. Thorough characterizations and implementation in model application are shown.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201801438