Determination of the size of defining set for Steiner triple systems

Every Steiner triple system is a uniform hypergraph. The coloring of hypergraph and its special case Steiner triple systems, {STS}\((v)\), is studied extensively. But the defining set of the coloring of hypergraph even its special case {STS}\((v)\), is not explored yet. We study minimum defining set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-07
Hauptverfasser: Besharati, Nazli, Mortezaeefar, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Every Steiner triple system is a uniform hypergraph. The coloring of hypergraph and its special case Steiner triple systems, {STS}\((v)\), is studied extensively. But the defining set of the coloring of hypergraph even its special case {STS}\((v)\), is not explored yet. We study minimum defining set and the largest minimal defining set for \(3\)-coloring of {STS}\((v)\). We determined minimum defining set and the largest minimal defining set, for all non-isomorphic {STS}\((v)\), \(v\le 15\). Also we have found the {\sf defining number} for all Steiner triple systems of order \(v\), and some lower bounds for the size of the largest minimal defining set for all Steiner triple systems of order \(v\), for each admissible \(v\).
ISSN:2331-8422