The Hall property \(\mathcal{D}_\pi\) is inherited by overgroups of \(\pi\)-Hall subgroups
Let \(\pi\) be a set of primes. We say that a finite group \(G\) is a \(\mathcal{D}_\pi\)-group if the maximal \(\pi\)-subgroups of \(G\) are conjugate. In this paper, we give an affirmative answer to Problem 17.44(b) from "Kourovka notebook", namely we prove that in a \(\mathcal{D}_\pi\)-...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(\pi\) be a set of primes. We say that a finite group \(G\) is a \(\mathcal{D}_\pi\)-group if the maximal \(\pi\)-subgroups of \(G\) are conjugate. In this paper, we give an affirmative answer to Problem 17.44(b) from "Kourovka notebook", namely we prove that in a \(\mathcal{D}_\pi\)-group an overgroup of a \(\pi\)-Hall subgroup is always a \(\mathcal{D}_\pi\)-group. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1808.03536 |