Solution of a Boundary Value Problem for Velocity-Linearized Navier–Stokes Equations in the Case of a Heated Spherical Solid Particle Settling in Fluid

Assuming that the fluid viscosity is an exponential-power function of temperature, a boundary value problem for the Navier–Stokes equations linearized with respect to velocity is solved and the uniqueness of the solution is proved. The problem of a nonuniformly heated spherical solid particle settli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2018-07, Vol.58 (7), p.1132-1141
Hauptverfasser: Malai, N. V., Glushak, A. V., Shchukin, E. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assuming that the fluid viscosity is an exponential-power function of temperature, a boundary value problem for the Navier–Stokes equations linearized with respect to velocity is solved and the uniqueness of the solution is proved. The problem of a nonuniformly heated spherical solid particle settling in fluid is considered as an application.
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542518070114