Solution of a Boundary Value Problem for Velocity-Linearized Navier–Stokes Equations in the Case of a Heated Spherical Solid Particle Settling in Fluid
Assuming that the fluid viscosity is an exponential-power function of temperature, a boundary value problem for the Navier–Stokes equations linearized with respect to velocity is solved and the uniqueness of the solution is proved. The problem of a nonuniformly heated spherical solid particle settli...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2018-07, Vol.58 (7), p.1132-1141 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Assuming that the fluid viscosity is an exponential-power function of temperature, a boundary value problem for the Navier–Stokes equations linearized with respect to velocity is solved and the uniqueness of the solution is proved. The problem of a nonuniformly heated spherical solid particle settling in fluid is considered as an application. |
---|---|
ISSN: | 0965-5425 1555-6662 |
DOI: | 10.1134/S0965542518070114 |