Asymptotic behavior at infinity of solutions of Monge-Ampère equations in half spaces
We prove that any convex viscosity solution of \(\det D^2u=1 \) outside a bounded domain of \(\mathbb{R}^n_+\) tends to a quadratic polynomial at infinity with rate at least \(\frac{x_n}{|x|^{n}}\) if \(u\) is a quadratic polynomial on \(\{x_n=0\}\) and satisfies \( \mu|x|^2\leq u\leq \mu^{-1}|x|^2\...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that any convex viscosity solution of \(\det D^2u=1 \) outside a bounded domain of \(\mathbb{R}^n_+\) tends to a quadratic polynomial at infinity with rate at least \(\frac{x_n}{|x|^{n}}\) if \(u\) is a quadratic polynomial on \(\{x_n=0\}\) and satisfies \( \mu|x|^2\leq u\leq \mu^{-1}|x|^2\) as \(|x|\rightarrow \infty\) for some \(0 |
---|---|
ISSN: | 2331-8422 |