Fractal Dimension for IFS-Attractors Revisited

One of the milestones in Fractal Geometry is the so-called Moran’s Theorem, which allows the calculation of the similarity dimension of any strict self-similar set under the open set condition. In this paper, we contribute a generalized version of the Moran’s theorem, which does not require the OSC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Qualitative theory of dynamical systems 2018-10, Vol.17 (3), p.709-722
Hauptverfasser: Fernández-Martínez, M., Guirao, J. L. G., Vera López, Juan Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the milestones in Fractal Geometry is the so-called Moran’s Theorem, which allows the calculation of the similarity dimension of any strict self-similar set under the open set condition. In this paper, we contribute a generalized version of the Moran’s theorem, which does not require the OSC to be satisfied by the similitudes that give rise to the corresponding attractor. To deal with, two generalized versions for the classical fractal dimensions, namely, the box and the Hausdorff dimensions, are explored in terms of fractal structures, a kind of uniform spaces.
ISSN:1575-5460
1662-3592
DOI:10.1007/s12346-018-0272-5