Shilnikov chaos, Filippov sliding and boundary equilibrium bifurcations

In the 1960s, L.P. Shilnikov showed that certain homoclinic orbits for smooth families of differential equations imply the existence of chaos, and there are complicated sequences of bifurcations near the parameter value at which the homoclinic orbit exists. We describe how this analysis is modified...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of applied mathematics 2018-10, Vol.29 (5), p.757-777
1. Verfasser: GLENDINNING, P. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the 1960s, L.P. Shilnikov showed that certain homoclinic orbits for smooth families of differential equations imply the existence of chaos, and there are complicated sequences of bifurcations near the parameter value at which the homoclinic orbit exists. We describe how this analysis is modified if the differential equations are piecewise smooth and the homoclinic orbit has a sliding segment. Moreover, we show that the Shilnikov mechanism appears naturally in the unfolding of boundary equilibrium bifurcations in $\mathbb{R}^3$.
ISSN:0956-7925
1469-4425
DOI:10.1017/S0956792518000335