Double Lie algebroids and second-order geometry, II
We complete the construction of the double Lie algebroid of a double Lie groupoid begun in the first paper of this title. We show that the Lie algebroid structure of an LA--groupoid may be prolonged to the Lie algebroid of its Lie groupoid structure; in the case of a double groupoid this prolonged s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 1997-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We complete the construction of the double Lie algebroid of a double Lie groupoid begun in the first paper of this title. We show that the Lie algebroid structure of an LA--groupoid may be prolonged to the Lie algebroid of its Lie groupoid structure; in the case of a double groupoid this prolonged structure for either LA--groupoid is canonically isomorphic to the Lie algebroid structure associated with the other; this extends many canonical isomorphisms associated with iterated tangent and cotangent structures. We also show that the cotangent of a double Lie groupoid is a symplectic double groupoid, and that the side groupoids of any symplectic double groupoid are Poisson groupoids in duality. Thus any double Lie groupoid gives rise to a dual pair of Poisson groupoids. |
---|---|
ISSN: | 2331-8422 |