Double Lie algebroids and second-order geometry, II

We complete the construction of the double Lie algebroid of a double Lie groupoid begun in the first paper of this title. We show that the Lie algebroid structure of an LA--groupoid may be prolonged to the Lie algebroid of its Lie groupoid structure; in the case of a double groupoid this prolonged s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 1997-12
1. Verfasser: Mackenzie, Kirill C H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We complete the construction of the double Lie algebroid of a double Lie groupoid begun in the first paper of this title. We show that the Lie algebroid structure of an LA--groupoid may be prolonged to the Lie algebroid of its Lie groupoid structure; in the case of a double groupoid this prolonged structure for either LA--groupoid is canonically isomorphic to the Lie algebroid structure associated with the other; this extends many canonical isomorphisms associated with iterated tangent and cotangent structures. We also show that the cotangent of a double Lie groupoid is a symplectic double groupoid, and that the side groupoids of any symplectic double groupoid are Poisson groupoids in duality. Thus any double Lie groupoid gives rise to a dual pair of Poisson groupoids.
ISSN:2331-8422