Algebras of unbounded operators over the ring of measurable functions and their derivations and automorphisms

In the present paper derivations and *-automorphisms of algebras of unbounded operators over the ring of measurable functions are investigated and it is shown that all L^0-linear derivations and L^{0}-linear *-automorphisms are inner. Moreover, it is proved that each L^0-linear automorphism of the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2007-10
Hauptverfasser: Albeverio, S, Ayupov, Sh A, Zaitov, A A, Ruziev, J E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper derivations and *-automorphisms of algebras of unbounded operators over the ring of measurable functions are investigated and it is shown that all L^0-linear derivations and L^{0}-linear *-automorphisms are inner. Moreover, it is proved that each L^0-linear automorphism of the algebra of all linear operators on a bo-dense submodule of a Kaplansky-Hilbert module over the ring of measurable functions is spatial.
ISSN:2331-8422