Convexity of Hypersurfaces in Spherical Spaces

A spherical set is called convex if for every pair of its points there is at least one minimal geodesic segment that joins these points and lies in the set. We prove that for n >= 3 a complete locally-convex (topological) immersion of a connected (n-1)-manifold into the n-sphere is a surjection o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2007-10
1. Verfasser: Rybnikov, Konstantin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A spherical set is called convex if for every pair of its points there is at least one minimal geodesic segment that joins these points and lies in the set. We prove that for n >= 3 a complete locally-convex (topological) immersion of a connected (n-1)-manifold into the n-sphere is a surjection onto the boundary of a convex set.
ISSN:2331-8422