Exponential stabilization of cascade ODE-linearized KdV system by boundary Dirichlet actuation

In this paper, we solve the problem of exponential stabilization for a class of cascade ODE-PDE systems governed by a linear ordinary differential equation and the 1−d linearized Korteweg–de Vries equation (KdV) posed on a bounded interval. The control for the whole system acts in the left boundary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of control 2018-09, Vol.43, p.33-38
1. Verfasser: Ayadi, Habib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue
container_start_page 33
container_title European journal of control
container_volume 43
creator Ayadi, Habib
description In this paper, we solve the problem of exponential stabilization for a class of cascade ODE-PDE systems governed by a linear ordinary differential equation and the 1−d linearized Korteweg–de Vries equation (KdV) posed on a bounded interval. The control for the whole system acts in the left boundary with Dirichlet condition of the KdV equation whereas the KdV acts in the linear ODE by a Dirichlet connection. We use the so-called backstepping method in infinite dimension to convert system under consideration to an exponentially stable cascade ODE-PDE system. Then, we use the invertibility of such design to achieve the exponential stability for the original ODE-PDE cascade system by using Lyapunov analysis.
doi_str_mv 10.1016/j.ejcon.2018.05.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2092478493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0947358017304570</els_id><sourcerecordid>2092478493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-ca5125407f322a20af34a53da3bd0c7bbe60488942f21e7045396bf8423c05d03</originalsourceid><addsrcrecordid>eNp9kD9v2zAQxYmiAWok_gRdCGSWevxnSUOGwHbTogGytBlLUOQJoSCLLkkXtT99GLtz7oZb3rt79yPkM4OaAVt9GWscbZhrDqytQdUA6gNZMClUpVYN-0gW0MmmEqqFT2SZ0gilhGClF-T39t8-zDhnbyaasun95E8m-zDTMFBrkjUO6dNmW01-RhP9CR394Z5pOqaMO9ofaR8OszPxSDc-evsyYabG5sN5yQ25GsyUcPl_XpNfX7c_19-qx6eH7-v7x8qWILmyRjGuJDSD4NxwMIOQRglnRO_ANn2PK5Bt20k-cIYNSCW6VT-0kgsLyoG4JreXvfsY_hwwZT2GQ5zLSc2h47JpZSeKSlxUNoaUIg56H_2uRNcM9BtLPeozS_3GUoPShWVx3V1cWB746zHqZD3OFp2PaLN2wb_rfwXpoX2b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092478493</pqid></control><display><type>article</type><title>Exponential stabilization of cascade ODE-linearized KdV system by boundary Dirichlet actuation</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><creator>Ayadi, Habib</creator><creatorcontrib>Ayadi, Habib</creatorcontrib><description>In this paper, we solve the problem of exponential stabilization for a class of cascade ODE-PDE systems governed by a linear ordinary differential equation and the 1−d linearized Korteweg–de Vries equation (KdV) posed on a bounded interval. The control for the whole system acts in the left boundary with Dirichlet condition of the KdV equation whereas the KdV acts in the linear ODE by a Dirichlet connection. We use the so-called backstepping method in infinite dimension to convert system under consideration to an exponentially stable cascade ODE-PDE system. Then, we use the invertibility of such design to achieve the exponential stability for the original ODE-PDE cascade system by using Lyapunov analysis.</description><identifier>ISSN: 0947-3580</identifier><identifier>EISSN: 1435-5671</identifier><identifier>DOI: 10.1016/j.ejcon.2018.05.005</identifier><language>eng</language><publisher>Philadelphia: Elsevier Ltd</publisher><subject>Actuation ; Backstepping ; Boundary conditions ; Cascade ODE-PDE ; Controllers ; Dirichlet problem ; Exponential stability ; Hilbert space ; Korteweg-Devries equation ; Linearization ; Linearized-KdV ; Partial differential equations ; Stability analysis ; Water waves</subject><ispartof>European journal of control, 2018-09, Vol.43, p.33-38</ispartof><rights>2018 European Control Association</rights><rights>Copyright Elsevier Limited Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-ca5125407f322a20af34a53da3bd0c7bbe60488942f21e7045396bf8423c05d03</citedby><cites>FETCH-LOGICAL-c331t-ca5125407f322a20af34a53da3bd0c7bbe60488942f21e7045396bf8423c05d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2092478493?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,64387,64391,72471</link.rule.ids></links><search><creatorcontrib>Ayadi, Habib</creatorcontrib><title>Exponential stabilization of cascade ODE-linearized KdV system by boundary Dirichlet actuation</title><title>European journal of control</title><description>In this paper, we solve the problem of exponential stabilization for a class of cascade ODE-PDE systems governed by a linear ordinary differential equation and the 1−d linearized Korteweg–de Vries equation (KdV) posed on a bounded interval. The control for the whole system acts in the left boundary with Dirichlet condition of the KdV equation whereas the KdV acts in the linear ODE by a Dirichlet connection. We use the so-called backstepping method in infinite dimension to convert system under consideration to an exponentially stable cascade ODE-PDE system. Then, we use the invertibility of such design to achieve the exponential stability for the original ODE-PDE cascade system by using Lyapunov analysis.</description><subject>Actuation</subject><subject>Backstepping</subject><subject>Boundary conditions</subject><subject>Cascade ODE-PDE</subject><subject>Controllers</subject><subject>Dirichlet problem</subject><subject>Exponential stability</subject><subject>Hilbert space</subject><subject>Korteweg-Devries equation</subject><subject>Linearization</subject><subject>Linearized-KdV</subject><subject>Partial differential equations</subject><subject>Stability analysis</subject><subject>Water waves</subject><issn>0947-3580</issn><issn>1435-5671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD9v2zAQxYmiAWok_gRdCGSWevxnSUOGwHbTogGytBlLUOQJoSCLLkkXtT99GLtz7oZb3rt79yPkM4OaAVt9GWscbZhrDqytQdUA6gNZMClUpVYN-0gW0MmmEqqFT2SZ0gilhGClF-T39t8-zDhnbyaasun95E8m-zDTMFBrkjUO6dNmW01-RhP9CR394Z5pOqaMO9ofaR8OszPxSDc-evsyYabG5sN5yQ25GsyUcPl_XpNfX7c_19-qx6eH7-v7x8qWILmyRjGuJDSD4NxwMIOQRglnRO_ANn2PK5Bt20k-cIYNSCW6VT-0kgsLyoG4JreXvfsY_hwwZT2GQ5zLSc2h47JpZSeKSlxUNoaUIg56H_2uRNcM9BtLPeozS_3GUoPShWVx3V1cWB746zHqZD3OFp2PaLN2wb_rfwXpoX2b</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Ayadi, Habib</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201809</creationdate><title>Exponential stabilization of cascade ODE-linearized KdV system by boundary Dirichlet actuation</title><author>Ayadi, Habib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-ca5125407f322a20af34a53da3bd0c7bbe60488942f21e7045396bf8423c05d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuation</topic><topic>Backstepping</topic><topic>Boundary conditions</topic><topic>Cascade ODE-PDE</topic><topic>Controllers</topic><topic>Dirichlet problem</topic><topic>Exponential stability</topic><topic>Hilbert space</topic><topic>Korteweg-Devries equation</topic><topic>Linearization</topic><topic>Linearized-KdV</topic><topic>Partial differential equations</topic><topic>Stability analysis</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayadi, Habib</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>European journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayadi, Habib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential stabilization of cascade ODE-linearized KdV system by boundary Dirichlet actuation</atitle><jtitle>European journal of control</jtitle><date>2018-09</date><risdate>2018</risdate><volume>43</volume><spage>33</spage><epage>38</epage><pages>33-38</pages><issn>0947-3580</issn><eissn>1435-5671</eissn><abstract>In this paper, we solve the problem of exponential stabilization for a class of cascade ODE-PDE systems governed by a linear ordinary differential equation and the 1−d linearized Korteweg–de Vries equation (KdV) posed on a bounded interval. The control for the whole system acts in the left boundary with Dirichlet condition of the KdV equation whereas the KdV acts in the linear ODE by a Dirichlet connection. We use the so-called backstepping method in infinite dimension to convert system under consideration to an exponentially stable cascade ODE-PDE system. Then, we use the invertibility of such design to achieve the exponential stability for the original ODE-PDE cascade system by using Lyapunov analysis.</abstract><cop>Philadelphia</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ejcon.2018.05.005</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-3580
ispartof European journal of control, 2018-09, Vol.43, p.33-38
issn 0947-3580
1435-5671
language eng
recordid cdi_proquest_journals_2092478493
source ProQuest Central UK/Ireland; Alma/SFX Local Collection
subjects Actuation
Backstepping
Boundary conditions
Cascade ODE-PDE
Controllers
Dirichlet problem
Exponential stability
Hilbert space
Korteweg-Devries equation
Linearization
Linearized-KdV
Partial differential equations
Stability analysis
Water waves
title Exponential stabilization of cascade ODE-linearized KdV system by boundary Dirichlet actuation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20stabilization%20of%20cascade%20ODE-linearized%20KdV%20system%20by%20boundary%20Dirichlet%20actuation&rft.jtitle=European%20journal%20of%20control&rft.au=Ayadi,%20Habib&rft.date=2018-09&rft.volume=43&rft.spage=33&rft.epage=38&rft.pages=33-38&rft.issn=0947-3580&rft.eissn=1435-5671&rft_id=info:doi/10.1016/j.ejcon.2018.05.005&rft_dat=%3Cproquest_cross%3E2092478493%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092478493&rft_id=info:pmid/&rft_els_id=S0947358017304570&rfr_iscdi=true