Exponential stabilization of cascade ODE-linearized KdV system by boundary Dirichlet actuation

In this paper, we solve the problem of exponential stabilization for a class of cascade ODE-PDE systems governed by a linear ordinary differential equation and the 1−d linearized Korteweg–de Vries equation (KdV) posed on a bounded interval. The control for the whole system acts in the left boundary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of control 2018-09, Vol.43, p.33-38
1. Verfasser: Ayadi, Habib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we solve the problem of exponential stabilization for a class of cascade ODE-PDE systems governed by a linear ordinary differential equation and the 1−d linearized Korteweg–de Vries equation (KdV) posed on a bounded interval. The control for the whole system acts in the left boundary with Dirichlet condition of the KdV equation whereas the KdV acts in the linear ODE by a Dirichlet connection. We use the so-called backstepping method in infinite dimension to convert system under consideration to an exponentially stable cascade ODE-PDE system. Then, we use the invertibility of such design to achieve the exponential stability for the original ODE-PDE cascade system by using Lyapunov analysis.
ISSN:0947-3580
1435-5671
DOI:10.1016/j.ejcon.2018.05.005