Exponential stabilization of cascade ODE-linearized KdV system by boundary Dirichlet actuation
In this paper, we solve the problem of exponential stabilization for a class of cascade ODE-PDE systems governed by a linear ordinary differential equation and the 1−d linearized Korteweg–de Vries equation (KdV) posed on a bounded interval. The control for the whole system acts in the left boundary...
Gespeichert in:
Veröffentlicht in: | European journal of control 2018-09, Vol.43, p.33-38 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we solve the problem of exponential stabilization for a class of cascade ODE-PDE systems governed by a linear ordinary differential equation and the 1−d linearized Korteweg–de Vries equation (KdV) posed on a bounded interval. The control for the whole system acts in the left boundary with Dirichlet condition of the KdV equation whereas the KdV acts in the linear ODE by a Dirichlet connection. We use the so-called backstepping method in infinite dimension to convert system under consideration to an exponentially stable cascade ODE-PDE system. Then, we use the invertibility of such design to achieve the exponential stability for the original ODE-PDE cascade system by using Lyapunov analysis. |
---|---|
ISSN: | 0947-3580 1435-5671 |
DOI: | 10.1016/j.ejcon.2018.05.005 |