Evolution of convex lens-shaped networks under curve shortening flow

We consider convex symmetric lens-shaped networks in R^2 that evolve under curve shortening flow. We show that the enclosed convex domain shrinks to a point in finite time. Furthermore, after appropriate rescaling the evolving networks converge to a self-similarly shrinking network, which we prove t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2007-11
Hauptverfasser: Schnürer, Oliver C, Azouani, Abderrahim, Georgi, Marc, Hell, Juliette, Jangle, Nihar, Koeller, Amos, Marxen, Tobias, Ritthaler, Sandra, Sáez, Mariel, Schulze, Felix, Smith, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider convex symmetric lens-shaped networks in R^2 that evolve under curve shortening flow. We show that the enclosed convex domain shrinks to a point in finite time. Furthermore, after appropriate rescaling the evolving networks converge to a self-similarly shrinking network, which we prove to be unique in an appropriate class. We also include a classification result for some self-similarly shrinking networks.
ISSN:2331-8422