Discrete spectrum distribution of the Landau Operator Perturbed by an Expanding Electric Potential
Under a perturbation by a decaying electric potential, the Landau Hamiltonian acquires some discrete eigenvalues between the Landau levels. We study the perturbation by an "expanding" electric potential \(V(t^{-1}x)\), \(t>0\), and derive a quasi-classical formula for the counting funct...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2007-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Under a perturbation by a decaying electric potential, the Landau Hamiltonian acquires some discrete eigenvalues between the Landau levels. We study the perturbation by an "expanding" electric potential \(V(t^{-1}x)\), \(t>0\), and derive a quasi-classical formula for the counting function of the discrete spectrum as \(t\to \infty\). |
---|---|
ISSN: | 2331-8422 |