Discrete spectrum distribution of the Landau Operator Perturbed by an Expanding Electric Potential

Under a perturbation by a decaying electric potential, the Landau Hamiltonian acquires some discrete eigenvalues between the Landau levels. We study the perturbation by an "expanding" electric potential \(V(t^{-1}x)\), \(t>0\), and derive a quasi-classical formula for the counting funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2007-11
Hauptverfasser: Rozenblum, Grigori, Sobolev, Alexander V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Under a perturbation by a decaying electric potential, the Landau Hamiltonian acquires some discrete eigenvalues between the Landau levels. We study the perturbation by an "expanding" electric potential \(V(t^{-1}x)\), \(t>0\), and derive a quasi-classical formula for the counting function of the discrete spectrum as \(t\to \infty\).
ISSN:2331-8422