Representing complex data using localized principal components with application to astronomical data

Often the relation between the variables constituting a multivariate data space might be characterized by one or more of the terms: ``nonlinear'', ``branched'', ``disconnected'', ``bended'', ``curved'', ``heterogeneous'', or, more general,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2007-09
Hauptverfasser: Einbeck, Jochen, Evers, Ludger, Bailer-Jones, Coryn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Often the relation between the variables constituting a multivariate data space might be characterized by one or more of the terms: ``nonlinear'', ``branched'', ``disconnected'', ``bended'', ``curved'', ``heterogeneous'', or, more general, ``complex''. In these cases, simple principal component analysis (PCA) as a tool for dimension reduction can fail badly. Of the many alternative approaches proposed so far, local approximations of PCA are among the most promising. This paper will give a short review of localized versions of PCA, focusing on local principal curves and local partitioning algorithms. Furthermore we discuss projections other than the local principal components. When performing local dimension reduction for regression or classification problems it is important to focus not only on the manifold structure of the covariates, but also on the response variable(s). Local principal components only achieve the former, whereas localized regression approaches concentrate on the latter. Local projection directions derived from the partial least squares (PLS) algorithm offer an interesting trade-off between these two objectives. We apply these methods to several real data sets. In particular, we consider simulated astrophysical data from the future Galactic survey mission Gaia.
ISSN:2331-8422