Tempered solutions of \(\mathcal D\)-modules on complex curves and formal invariants
Let \(X\) be a complex analytic curve. In this paper we prove that the subanalytic sheaf of tempered holomorphic solutions of \(\mathcal D_X\)-modules induces a fully faithful functor on a subcategory of germs of formal holonomic \(\mathcal D_X\)-modules. Further, given a germ \(\mathcal M\) of holo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2007-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(X\) be a complex analytic curve. In this paper we prove that the subanalytic sheaf of tempered holomorphic solutions of \(\mathcal D_X\)-modules induces a fully faithful functor on a subcategory of germs of formal holonomic \(\mathcal D_X\)-modules. Further, given a germ \(\mathcal M\) of holonomic \(\mathcal D_X\)-module, we obtain some results linking the subanalytic sheaf of tempered solutions of \(\mathcal M\) and the classical formal and analytic invariants of \(\mathcal M\). |
---|---|
ISSN: | 2331-8422 |