Weighted network modules

The inclusion of link weights into the analysis of network properties allows a deeper insight into the (often overlapping) modular structure of real-world webs. We introduce a clustering algorithm (CPMw, Clique Percolation Method with weights) for weighted networks based on the concept of percolatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2007-03
Hauptverfasser: Farkas, Illes J, Abel, Daniel, Palla, Gergely, Vicsek, Tamas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The inclusion of link weights into the analysis of network properties allows a deeper insight into the (often overlapping) modular structure of real-world webs. We introduce a clustering algorithm (CPMw, Clique Percolation Method with weights) for weighted networks based on the concept of percolating k-cliques with high enough intensity. The algorithm allows overlaps between the modules. First, we give detailed analytical and numerical results about the critical point of weighted k-clique percolation on (weighted) Erdos-Renyi graphs. Then, for a scientist collaboration web and a stock correlation graph we compute three-link weight correlations and with the CPMw the weighted modules. After reshuffling link weights in both networks and computing the same quantities for the randomised control graphs as well, we show that groups of 3 or more strong links prefer to cluster together in both original graphs.
ISSN:2331-8422
DOI:10.48550/arxiv.0703706