The complement of the Bowditch space in the SL(2,C) character variety
Let \({\mathcal X}\) be the space of type-preserving \(\SL(2,C)\) characters of the punctured torus \(T\). The Bowditch space \({\mathcal X}_{BQ}\) is the largest open subset of \({\mathcal X}\) on which the mapping class group acts properly discontinuously, this is characterized by two simple condi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2006-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \({\mathcal X}\) be the space of type-preserving \(\SL(2,C)\) characters of the punctured torus \(T\). The Bowditch space \({\mathcal X}_{BQ}\) is the largest open subset of \({\mathcal X}\) on which the mapping class group acts properly discontinuously, this is characterized by two simple conditions called the \(BQ\)-conditions. In this note, we show that \([\rho]\) is in the interior of the complement of \({\mathcal X}_{BQ}\) if there exists an essential simple closed curve \(X\) on \(T\) such that \(|{\rm tr} \rho(X)| |
---|---|
ISSN: | 2331-8422 |