Puffini-Videv Models and Manifolds

Let \(J(\pi)\) be the higher order Jacobi operator. We study algebraic curvature tensors where \(J(\pi)J(\pi^{\perp})=J(\pi^{\perp})J(\pi)\). In the Riemannian setting, we give a complete characterization of such tensors; in the pseudo-Riemannian setting, partial results are available. We present no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2006-05
Hauptverfasser: Gilkey, P, Puffini, E, Videv, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(J(\pi)\) be the higher order Jacobi operator. We study algebraic curvature tensors where \(J(\pi)J(\pi^{\perp})=J(\pi^{\perp})J(\pi)\). In the Riemannian setting, we give a complete characterization of such tensors; in the pseudo-Riemannian setting, partial results are available. We present non-trivial geometric examples of Riemannian manifolds with this property.
ISSN:2331-8422