Puffini-Videv Models and Manifolds
Let \(J(\pi)\) be the higher order Jacobi operator. We study algebraic curvature tensors where \(J(\pi)J(\pi^{\perp})=J(\pi^{\perp})J(\pi)\). In the Riemannian setting, we give a complete characterization of such tensors; in the pseudo-Riemannian setting, partial results are available. We present no...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2006-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(J(\pi)\) be the higher order Jacobi operator. We study algebraic curvature tensors where \(J(\pi)J(\pi^{\perp})=J(\pi^{\perp})J(\pi)\). In the Riemannian setting, we give a complete characterization of such tensors; in the pseudo-Riemannian setting, partial results are available. We present non-trivial geometric examples of Riemannian manifolds with this property. |
---|---|
ISSN: | 2331-8422 |