The Ring of Quasimodular Forms for a Cocompact Group

We describe the additive structure of the graded ring \(\widetilde{M}_*\) of quasimodular forms over any discrete and cocompact group \(\Gamma \subset \rm{PSL}(2, \RM).\) We show that this ring is never finitely generated. We calculate the exact number of new generators in each weight \(k\). This nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2006-03
1. Verfasser: Najib Ouled Azaiez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Najib Ouled Azaiez
description We describe the additive structure of the graded ring \(\widetilde{M}_*\) of quasimodular forms over any discrete and cocompact group \(\Gamma \subset \rm{PSL}(2, \RM).\) We show that this ring is never finitely generated. We calculate the exact number of new generators in each weight \(k\). This number is constant for \(k\) sufficiently large and equals \(\dim_{\CM}(I / I \cap \widetilde{I}^2),\) where \(I\) and \(\widetilde{I}\) are the ideals of modular forms and quasimodular forms, respectively, of positive weight. We show that \(\widetilde{M}_*\) is contained in some finitely generated ring \(\widetilde{R}_*\) of meromorphic quasimodular forms with \(\dim \widetilde{R}_k = O(k^2),\) i.e. the same order of growth as \(\widetilde{M}_*.\)
doi_str_mv 10.48550/arxiv.0603268
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2091746478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091746478</sourcerecordid><originalsourceid>FETCH-proquest_journals_20917464783</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOHGxESirM43cQZL_6gzEV017KRBUAhwsaXGx9fBB3A6w3cI2SY0FlpKujf23b5iqihnSi9IwDhPIi0YW5HQuY5SylTKpOQBEcWjhms73gEbuHjj2gFvvjcWcrSDgwYtGMiwwmEy1Qwni37akGVjeleHv67JLj8W2TmaLD597eayQ2_HL5WMHpJUKJFq_t_1ARBvOYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091746478</pqid></control><display><type>article</type><title>The Ring of Quasimodular Forms for a Cocompact Group</title><source>Free E- Journals</source><creator>Najib Ouled Azaiez</creator><creatorcontrib>Najib Ouled Azaiez</creatorcontrib><description>We describe the additive structure of the graded ring \(\widetilde{M}_*\) of quasimodular forms over any discrete and cocompact group \(\Gamma \subset \rm{PSL}(2, \RM).\) We show that this ring is never finitely generated. We calculate the exact number of new generators in each weight \(k\). This number is constant for \(k\) sufficiently large and equals \(\dim_{\CM}(I / I \cap \widetilde{I}^2),\) where \(I\) and \(\widetilde{I}\) are the ideals of modular forms and quasimodular forms, respectively, of positive weight. We show that \(\widetilde{M}_*\) is contained in some finitely generated ring \(\widetilde{R}_*\) of meromorphic quasimodular forms with \(\dim \widetilde{R}_k = O(k^2),\) i.e. the same order of growth as \(\widetilde{M}_*.\)</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0603268</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Rings (mathematics) ; Weight</subject><ispartof>arXiv.org, 2006-03</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/math/0603268.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Najib Ouled Azaiez</creatorcontrib><title>The Ring of Quasimodular Forms for a Cocompact Group</title><title>arXiv.org</title><description>We describe the additive structure of the graded ring \(\widetilde{M}_*\) of quasimodular forms over any discrete and cocompact group \(\Gamma \subset \rm{PSL}(2, \RM).\) We show that this ring is never finitely generated. We calculate the exact number of new generators in each weight \(k\). This number is constant for \(k\) sufficiently large and equals \(\dim_{\CM}(I / I \cap \widetilde{I}^2),\) where \(I\) and \(\widetilde{I}\) are the ideals of modular forms and quasimodular forms, respectively, of positive weight. We show that \(\widetilde{M}_*\) is contained in some finitely generated ring \(\widetilde{R}_*\) of meromorphic quasimodular forms with \(\dim \widetilde{R}_k = O(k^2),\) i.e. the same order of growth as \(\widetilde{M}_*.\)</description><subject>Rings (mathematics)</subject><subject>Weight</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0OgjAUQOHGxESirM43cQZL_6gzEV017KRBUAhwsaXGx9fBB3A6w3cI2SY0FlpKujf23b5iqihnSi9IwDhPIi0YW5HQuY5SylTKpOQBEcWjhms73gEbuHjj2gFvvjcWcrSDgwYtGMiwwmEy1Qwni37akGVjeleHv67JLj8W2TmaLD597eayQ2_HL5WMHpJUKJFq_t_1ARBvOYY</recordid><startdate>20060313</startdate><enddate>20060313</enddate><creator>Najib Ouled Azaiez</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20060313</creationdate><title>The Ring of Quasimodular Forms for a Cocompact Group</title><author>Najib Ouled Azaiez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20917464783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Rings (mathematics)</topic><topic>Weight</topic><toplevel>online_resources</toplevel><creatorcontrib>Najib Ouled Azaiez</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najib Ouled Azaiez</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Ring of Quasimodular Forms for a Cocompact Group</atitle><jtitle>arXiv.org</jtitle><date>2006-03-13</date><risdate>2006</risdate><eissn>2331-8422</eissn><abstract>We describe the additive structure of the graded ring \(\widetilde{M}_*\) of quasimodular forms over any discrete and cocompact group \(\Gamma \subset \rm{PSL}(2, \RM).\) We show that this ring is never finitely generated. We calculate the exact number of new generators in each weight \(k\). This number is constant for \(k\) sufficiently large and equals \(\dim_{\CM}(I / I \cap \widetilde{I}^2),\) where \(I\) and \(\widetilde{I}\) are the ideals of modular forms and quasimodular forms, respectively, of positive weight. We show that \(\widetilde{M}_*\) is contained in some finitely generated ring \(\widetilde{R}_*\) of meromorphic quasimodular forms with \(\dim \widetilde{R}_k = O(k^2),\) i.e. the same order of growth as \(\widetilde{M}_*.\)</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0603268</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2006-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2091746478
source Free E- Journals
subjects Rings (mathematics)
Weight
title The Ring of Quasimodular Forms for a Cocompact Group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Ring%20of%20Quasimodular%20Forms%20for%20a%20Cocompact%20Group&rft.jtitle=arXiv.org&rft.au=Najib%20Ouled%20Azaiez&rft.date=2006-03-13&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0603268&rft_dat=%3Cproquest%3E2091746478%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2091746478&rft_id=info:pmid/&rfr_iscdi=true