The Ring of Quasimodular Forms for a Cocompact Group

We describe the additive structure of the graded ring \(\widetilde{M}_*\) of quasimodular forms over any discrete and cocompact group \(\Gamma \subset \rm{PSL}(2, \RM).\) We show that this ring is never finitely generated. We calculate the exact number of new generators in each weight \(k\). This nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2006-03
1. Verfasser: Najib Ouled Azaiez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe the additive structure of the graded ring \(\widetilde{M}_*\) of quasimodular forms over any discrete and cocompact group \(\Gamma \subset \rm{PSL}(2, \RM).\) We show that this ring is never finitely generated. We calculate the exact number of new generators in each weight \(k\). This number is constant for \(k\) sufficiently large and equals \(\dim_{\CM}(I / I \cap \widetilde{I}^2),\) where \(I\) and \(\widetilde{I}\) are the ideals of modular forms and quasimodular forms, respectively, of positive weight. We show that \(\widetilde{M}_*\) is contained in some finitely generated ring \(\widetilde{R}_*\) of meromorphic quasimodular forms with \(\dim \widetilde{R}_k = O(k^2),\) i.e. the same order of growth as \(\widetilde{M}_*.\)
ISSN:2331-8422
DOI:10.48550/arxiv.0603268