On the first Zassenhaus conjecture for integral group rings

It was conjectured by H. Zassenhaus that a torsion unit of an integral group ring of a finite group is conjugate to a group element within the rational group algebra. The object of this note is the computational aspect of a method developed by I.S. Luthar and I.B.S. Passi which sometimes permits an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2005-07
Hauptverfasser: Bovdi, V, Höfert, C, Kimmerle, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It was conjectured by H. Zassenhaus that a torsion unit of an integral group ring of a finite group is conjugate to a group element within the rational group algebra. The object of this note is the computational aspect of a method developed by I.S. Luthar and I.B.S. Passi which sometimes permits an answer to this conjecture. We illustrate the method on certain explicit examples. We prove with additional arguments that the conjecture is valid for any 3-dimensional crystallographic point group. Finally we apply the method to generic character tables and establish a p-variation of the conjecture for the simple groups PSL(2,p).
ISSN:2331-8422