Solvable real rigid Lie algebras are not necessarily completely solvable [Les algèbres de Lie résolubles rigides réelles ne sont pas nécessairement complètement résolubles]
We show that a solvable real rigid Lie algebra is not completelt rigid, by constructing an example of minimal dimension where the external torus is not spanned by \(ad\)-semisimple derivations over \(\mathbb{R}\). We analyze the real forms of nilradicals of solvable rigid Lie algebras in dimensions...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2005-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that a solvable real rigid Lie algebra is not completelt rigid, by constructing an example of minimal dimension where the external torus is not spanned by \(ad\)-semisimple derivations over \(\mathbb{R}\). We analyze the real forms of nilradicals of solvable rigid Lie algebras in dimensions \(n\leq 7\) and give the real classification for dimension 8. |
---|---|
ISSN: | 2331-8422 |