Solvable real rigid Lie algebras are not necessarily completely solvable [Les algèbres de Lie résolubles rigides réelles ne sont pas nécessairement complètement résolubles]

We show that a solvable real rigid Lie algebra is not completelt rigid, by constructing an example of minimal dimension where the external torus is not spanned by \(ad\)-semisimple derivations over \(\mathbb{R}\). We analyze the real forms of nilradicals of solvable rigid Lie algebras in dimensions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2005-10
Hauptverfasser: Ancochea Bermudez, J M, Campoamor-Stursberg, R, L Garcia Vergnolle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that a solvable real rigid Lie algebra is not completelt rigid, by constructing an example of minimal dimension where the external torus is not spanned by \(ad\)-semisimple derivations over \(\mathbb{R}\). We analyze the real forms of nilradicals of solvable rigid Lie algebras in dimensions \(n\leq 7\) and give the real classification for dimension 8.
ISSN:2331-8422