Cohomologie de Chevalley des graphes vectoriels
The space of smotth functions and vector fields on \(\R^d\) is a Lie subalgebra of the (graded) Lie algebra \(T\_{poly}(\R^d)\), equipped with the Scouten bracket. In this paper, we compute the cohomology of this subalgebra for the adjoint representation in \(T\_{poly}(\R^d)\), restricting ourselves...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2005-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The space of smotth functions and vector fields on \(\R^d\) is a Lie subalgebra of the (graded) Lie algebra \(T\_{poly}(\R^d)\), equipped with the Scouten bracket. In this paper, we compute the cohomology of this subalgebra for the adjoint representation in \(T\_{poly}(\R^d)\), restricting ourselves to the case of cochains defined with purely aerial Kontsevich's graphs, as in [AGM]. We find results which are very similar to the classical Gelfand-Fuchs and de Wilde-Lecomte one. |
---|---|
ISSN: | 2331-8422 |