Cohomologie de Chevalley des graphes vectoriels

The space of smotth functions and vector fields on \(\R^d\) is a Lie subalgebra of the (graded) Lie algebra \(T\_{poly}(\R^d)\), equipped with the Scouten bracket. In this paper, we compute the cohomology of this subalgebra for the adjoint representation in \(T\_{poly}(\R^d)\), restricting ourselves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2005-07
Hauptverfasser: Aloulou, Walid, Arnal, Didier, Chatbouri, Ridha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The space of smotth functions and vector fields on \(\R^d\) is a Lie subalgebra of the (graded) Lie algebra \(T\_{poly}(\R^d)\), equipped with the Scouten bracket. In this paper, we compute the cohomology of this subalgebra for the adjoint representation in \(T\_{poly}(\R^d)\), restricting ourselves to the case of cochains defined with purely aerial Kontsevich's graphs, as in [AGM]. We find results which are very similar to the classical Gelfand-Fuchs and de Wilde-Lecomte one.
ISSN:2331-8422