A converse theorem for \(\Gamma_0(13)\)

We prove that a Dirichlet series with a functional equation and Euler product of a particular form can only arise from a holomorphic cusp form on the Hecke congruence group \(\Gamma_0(13)\). The proof does not assume a functional equation for the twists of the Dirichlet series. The main new ingredie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2006-01
Hauptverfasser: Conrey, J B, Farmer, David W, Odgers, B E, Snaith, N C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that a Dirichlet series with a functional equation and Euler product of a particular form can only arise from a holomorphic cusp form on the Hecke congruence group \(\Gamma_0(13)\). The proof does not assume a functional equation for the twists of the Dirichlet series. The main new ingredient is a generalization of the familiar Weil's lemma that played a prominent role in previous converse theorems.
ISSN:2331-8422