A converse theorem for \(\Gamma_0(13)\)
We prove that a Dirichlet series with a functional equation and Euler product of a particular form can only arise from a holomorphic cusp form on the Hecke congruence group \(\Gamma_0(13)\). The proof does not assume a functional equation for the twists of the Dirichlet series. The main new ingredie...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2006-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that a Dirichlet series with a functional equation and Euler product of a particular form can only arise from a holomorphic cusp form on the Hecke congruence group \(\Gamma_0(13)\). The proof does not assume a functional equation for the twists of the Dirichlet series. The main new ingredient is a generalization of the familiar Weil's lemma that played a prominent role in previous converse theorems. |
---|---|
ISSN: | 2331-8422 |