Classification of deformation quantization algebroids on complex symplectic manifolds
Deformation quantization algebroids over a complex symplectic manifold X are locally given by rings of WKB operators, that is, microdifferential operators with an extra central parameter \tau. In this paper, we will show that such algebroids are classified by H^2(X;k^*), where k^* is a subgroup of t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2005-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deformation quantization algebroids over a complex symplectic manifold X are locally given by rings of WKB operators, that is, microdifferential operators with an extra central parameter \tau. In this paper, we will show that such algebroids are classified by H^2(X;k^*), where k^* is a subgroup of the group of invertible formal Laurent series in \tau^-1. |
---|---|
ISSN: | 2331-8422 |