Classification of deformation quantization algebroids on complex symplectic manifolds

Deformation quantization algebroids over a complex symplectic manifold X are locally given by rings of WKB operators, that is, microdifferential operators with an extra central parameter \tau. In this paper, we will show that such algebroids are classified by H^2(X;k^*), where k^* is a subgroup of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2005-12
1. Verfasser: Polesello, Pietro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deformation quantization algebroids over a complex symplectic manifold X are locally given by rings of WKB operators, that is, microdifferential operators with an extra central parameter \tau. In this paper, we will show that such algebroids are classified by H^2(X;k^*), where k^* is a subgroup of the group of invertible formal Laurent series in \tau^-1.
ISSN:2331-8422